www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetige Differenzierbarkeit
Stetige Differenzierbarkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 So 12.05.2013
Autor: Ratatouille

Aufgabe
Sei V ein Banachraum, f : [a,b] --> V stetig diff'bar mit f'(t) [mm] \not= [/mm] 0 für alle t [mm] \in [/mm] [a,b]. Zeigen Sie:

a) Es existiert eine bijektive Funktion [mm] \nu [/mm] : [0,L] --> [a,b], sodass [mm] \nu [/mm] , [mm] \nu^{-1} [/mm] stetig diff'bar sind und für g = f \ circ [mm] \nu [/mm] : [0, L] --> V gilt: g ist diff'bar mit ||g'(t')|| = 1 für alle t' [mm] \in [/mm] [0, L].

b) L mit den obigen Eigenschaften ist die Länge der Kurve f.

Hallo,

für b) möchte ich den Satz, dass f als stetig diff'bare Funktion mit [mm] L(f)=\integral_{a}^{b}{||f'(x)|| dx} [/mm] rektifizierbar ist, nutzen. Das traue ich mir irgendwie noch zu.

Nur bei a) hab ich keine Ahnung, wie ich vorgehen soll. Darf ich die Existenz von [mm] \nu [/mm] voraussetzen oder wie kann ich das zeigen? Und welche Norm ist bei ||g'(t')||=1 gemeint?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stetige Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Mo 13.05.2013
Autor: fred97


> Sei V ein Banachraum, f : [a,b] --> V stetig diff'bar mit
> f'(t) [mm]\not=[/mm] 0 für alle t [mm]\in[/mm] [a,b]. Zeigen Sie:
>  
> a) Es existiert eine bijektive Funktion [mm]\nu[/mm] : [0,L] -->
> [a,b], sodass [mm]\nu[/mm] , [mm]\nu^{-1}[/mm] stetig diff'bar sind und für
> g = f \ circ [mm]\nu[/mm] : [0, L] --> V gilt: g ist diff'bar mit
> ||g'(t')|| = 1 für alle t' [mm]\in[/mm] [0, L].
>  
> b) L mit den obigen Eigenschaften ist die Länge der Kurve
> f.
>  Hallo,
>  
> für b) möchte ich den Satz, dass f als stetig diff'bare
> Funktion mit [mm]L(f)=\integral_{a}^{b}{||f'(x)|| dx}[/mm]
> rektifizierbar ist, nutzen. Das traue ich mir irgendwie
> noch zu.
>
> Nur bei a) hab ich keine Ahnung, wie ich vorgehen soll.
> Darf ich die Existenz von [mm]\nu[/mm] voraussetzen



Nein, die sollst Du zeigen !

Für t [mm] \in [/mm] [a,b] setze

    [mm] s(t):=\integral_{a}^{t}{||f'(x)|| dx}. [/mm]

Zeige: s:[a,b] [mm] \to [/mm] [0,L(f)] ist bijektiv. Nimm dann [mm] \nu:=s^{-1} [/mm]

>  oder wie kann
> ich das zeigen? Und welche Norm ist bei ||g'(t')||=1
> gemeint?


Die auf V.

FRED

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
                
Bezug
Stetige Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:11 Di 14.05.2013
Autor: Ratatouille

Ich setze also s(t)=s(t') und will daraus folgern: t=t'.

Aber wie kann ich das f' integrieren, wenn da eine Norm drum steht?

und was kann ich was kann ich daraus folgern, dass ||g'(t')|| = 1 = [mm] ||f'(\nu(t))*\nu' [/mm] ?

Bezug
                        
Bezug
Stetige Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:20 Mi 15.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Stetige Differenzierbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:25 Mi 15.05.2013
Autor: Ratatouille

Und magst du erklären, wie du auf

$ [mm] s(t):=\integral_{a}^{t}{||f'(x)|| dx}. [/mm] $

gekommen bist?

Ich hab nun schon alles versucht, was mir einfällt. f=g [mm] \nu [/mm] ^{-1}, L(f)=... [mm] L(\nu)=... [/mm] aber irgendwie "sehe" ich es nicht. Meine Probleme sind, dass ich ja auch gar keine Form für f habe, sondern nur für L(f). Und L(g) kann ich noch nicht mal konkret angeben, weil es ja nicht stetig diff'bar ist und der Term [mm] ||g'(\tau)|| [/mm] sagt mir gar nichts...

Bezug
                        
Bezug
Stetige Differenzierbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 16.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]