www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Statistischer Test
Statistischer Test < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Statistischer Test: Verständnis Problem
Status: (Frage) überfällig Status 
Datum: 12:29 Fr 03.05.2013
Autor: Reduktion

Aufgabe
Lineares Modell: [mm] Y=\zeta+\epsilon [/mm] mit [mm] Y\in \IR^n [/mm] und [mm] \zeta\in W_r, [/mm] dabei ist [mm] W_r [/mm] ein r-dimensionaler Unterraum des [mm] \IR^n. [/mm] Somit ist [mm] Y\sim\mathcal{N}_n(\zeta,\sigma I_n) [/mm]

Hypothese: [mm] H_0: \zeta\in W_q [/mm] gegen [mm] H_1: \zeta\in W_r\setminus\ W_q, [/mm] mit q<r.

Teststatatistik [mm] T_n [/mm] ist eine [mm] F_{r-q,n-r}(\delta)-verteilte [/mm] ZG, wobei im Fall der Null-Hypothese der nichtzentralitäts Parameter [mm] \delta=0 [/mm] ist. Dabei sind [mm] \widehat{\zeta}_0 [/mm] und [mm] \widehat{\zeta} [/mm] die UMVUE-Schätzer für [mm] \zeta [/mm] unter der jeweiligen Hypothese.

[mm] T_n(Y)=\frac{1/(r-q)}{1/(n-r)}\frac{\|Y-\widehat{\zeta}_0(Y)\|^2-\|Y-\widehat{\zeta}(Y)\|^2}{\|Y-\widehat{\zeta}(Y)\|^2} [/mm]



Hallo zusammen,

entsprechen die ZG einem linearen Modell, dann lässt sich zum Testen der Hypothese, ob der Mittelwertvektor aus einer orthogonalen Zerlegung eines bestimmten linearen Unterraumes entstammt (siehe Hypothese), anhand des F-Testes prüfen. Die dafür verwendete Prüfgröße [mm] T_n [/mm] entspringt dem LQ-Test. Zähler und Nenner sind UMVUE-Schätzer für [mm] \sigma^2, [/mm] d.h. sie konvergieren im Falle der jeweiligen Hypothese gegen den wahren Parameter [mm] \sigma^2. [/mm]

Verwendet man [mm] T_n [/mm] unter einem "falschen" Modell, bspw. [mm] Y\sim\mathcal{N}_n(\zeta,\Sigma), [/mm] dann weiß man nicht mehr ob Zähler und Nenner von [mm] T_n [/mm] noch gegen den wahren Parameter konvergieren bzw. ob [mm] \widehat{\zeta}_0 [/mm] und [mm] \widehat{\zeta} [/mm] gegen den wahren Parameter konvergieren. Angenommen man kennt die Verteilung von [mm] T_n [/mm] unter Verwendung des falschen Modells (Quotient aus quadratischen Formen), inwiefern kann man das dann noch als Test verwenden?

        
Bezug
Statistischer Test: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:21 So 05.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]