www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion von ln(1+x)
Stammfunktion von ln(1+x) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von ln(1+x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:46 Mi 25.02.2009
Autor: schlagziele

Aufgabe
Welche Fläche schließt die Funktion f(x)=ln(1+x) mit der x-Achse zwischen den Grenzen x1=0 und x2= (e-1) ein?

Hallo,

habe obige Aufgabe zu berechnen, weiß aber nicht wie man die Stammfunktion berechnet. Kann mir jemand einen Hinweis geben? Danke schon mal!

        
Bezug
Stammfunktion von ln(1+x): partielle Integration
Status: (Antwort) fertig Status 
Datum: 16:54 Mi 25.02.2009
Autor: Loddar

Hallo schlagziele!


Wende hier partielle Integration an für:
[mm] $$\ln(1+x) [/mm] \ = \ [mm] \red{1}*\ln(1+x)$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Stammfunktion von ln(1+x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Mi 25.02.2009
Autor: schlagziele

Habe ich jetzt versucht:

1) [mm] \integral_{}^{}{u'*v} [/mm] = u*v - [mm] \integral_{}^{}{v'*u} [/mm]
  [mm] \integral_{}^{}{ln(1+x)*1}= [/mm] ?
    Da stehe ich ja wieder vor dem gleichen Problem, ich kann u nicht bestimmen.  Habe es dann andersrum versucht, obwohl v ja eigentlich die einfache Funktion sein soll:

  [mm] \integral_{}^{}{1*ln(1+x)}=x*ln(1+x) [/mm] - [mm] \integral_{}^{}{\bruch{1}{1+x}} [/mm] * x

Da habe ich nun wieder ein Problem, weil ich nicht weiß wie man das integrieren soll.

Bezug
                        
Bezug
Stammfunktion von ln(1+x): Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 25.02.2009
Autor: schachuzipus

Hallo schlagziele,

> Habe ich jetzt versucht:
>  
> 1) [mm]\integral_{}^{}{u'*v}[/mm] = u*v - [mm]\integral_{}^{}{v'*u}[/mm]
>    [mm]\integral_{}^{}{ln(1+x)*1}=[/mm] ?
>      Da stehe ich ja wieder vor dem gleichen Problem, ich
> kann u nicht bestimmen.  Habe es dann andersrum versucht,
> obwohl v ja eigentlich die einfache Funktion sein soll:
>  
> [mm] $\integral_{}^{}{1*ln(1+x) \ \red{dx}}=x*ln(1+x) [/mm] -  [mm] \integral_{}^{}{\bruch{1}{1+x}}\cdot{} [/mm] x \ [mm] \red{dx}$ [/mm] [ok]
>  
> Da habe ich nun wieder ein Problem, weil ich nicht weiß wie
> man das integrieren soll.

Schreibe [mm] $\frac{x}{1+x}=\frac{x\red{+1-1}}{1+x}=1-\frac{1}{1+x}$ [/mm]

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]