www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktion von Polynomen
Stammfunktion von Polynomen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion von Polynomen: Lösungsweg
Status: (Frage) beantwortet Status 
Datum: 18:08 Fr 17.03.2006
Autor: Esperanza

Aufgabe
a) Bestimme die Stammfunktion von:

[mm] f(x)=\bruch{x^4+x^3+x^2+x+1}{x^3+x^2} [/mm]

b) Wie muss man [mm] \gamma [/mm] E R wählen, damit

[mm] \integral_{1}^{3}{(f(x)-\gamma) dx}=0 [/mm]

gilt?

zu a) In der Lösung steht das ich Polynomdivision in Kombination mit Partialbruchzerlegung anwenden muss.

Bei der Polynomdivision kommt bei mir raus:

[mm] x+\bruch{1}{x}+\bruch{1}{x^3+x^2} [/mm]

das kann ich umformen zu:

[mm] x+\bruch{1}{x}+\bruch{1}{x^2(x+1)} [/mm]

so und dann komme ich nicht weiter....ich kann das doch sicher noch weiter zerlegen oder?

Die Lösung soll sein: [mm] f(x)=x+\bruch{x^2+x+1}{x^2(x+1)} [/mm]

[mm] =x+\bruch{1}{x^2}+\bruch{1}{x+1} [/mm]

und daraus soll folgen:

[mm] F(x)=\bruch{1}{2}x^2-\bruch{1}{x}+ln|x+1| [/mm]

Fragen dazu: Ist meine Lösung der Polynomdivision richtig und wie komme ich auf die Lösung der Aufgabe....weil mein Ansatz sieht ja fast so ähnlich aus, aber ich komme nicht auf das was hier als Lösung angegeben wird.
Auf die Stammfunktion komme ich mit der vorgegebenen Lösungsfunktion...aber wie ich von meinem Stand aus bis zur gegebenen Lösungsfunktion komme versteh ich nicht. Wo ist mein Denkfehler?

zu b)

Lösung laut Vorgabe:

[mm] \integral_{1}^{3}{(f(x)-\gamma) dx} [/mm] = [mm] \integral_{1}^{3}{f(x)dx-\gamma }\integral_{1}^{3}{1dx} [/mm] = [mm] F(3)-F(1)-2\gamma=\bruch{14}{3}+ln(4)-ln(2)-2\gamma=\bruch{14}{3}+ln(2)-2\gamma [/mm]

Und daraus soll folgen: [mm] \gamma=\bruch{7}{3}+\bruch{1}{2}ln(2)\approx2,6799 [/mm]

Fragen dazu: Ich hätt jetzt auch erstmal F(3)-F(1) gerechnet und da käme bei mir raus:  [mm] \bruch{14}{3}+ln(2) [/mm]

Soweit sogut.....aber woher kommt in der angegebenen Lösungsformel die 2 vor dem [mm] \gamma [/mm] her? Weil nach [mm] \gamma [/mm] umstellen is ja dann nicht das Ding...aber ich hätt jetzt keine 2 vor das [mm] \gamma [/mm] gemacht.

So, wer hat Lust das mal nachzuvollziehen? Bin euch dankbar!

Esperanza

        
Bezug
Stammfunktion von Polynomen: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:26 Fr 17.03.2006
Autor: Loddar

Hallo Esperanza!


> Bei der Polynomdivision kommt bei mir raus: [mm]x+\bruch{1}{x}+\bruch{1}{x^3+x^2}[/mm]

[daumenhoch]

  

> das kann ich umformen zu: [mm]x+\bruch{1}{x}+\bruch{1}{x^2(x+1)}[/mm]

[daumenhoch]

Und nun musst Du für den letzten Bruch eine Partialbruchzerlegung vornehmen:

[mm] $\bruch{1}{x^2*(x+1)} [/mm] \ = \ [mm] \bruch{A}{x}+\bruch{B}{x^2}+\bruch{C}{x+1}$ [/mm]



> zu b)
>  
> Soweit sogut.....aber woher kommt in der angegebenen
> Lösungsformel die 2 vor dem [mm]\gamma[/mm] her? Weil nach [mm]\gamma[/mm]
> umstellen is ja dann nicht das Ding...aber ich hätt jetzt
> keine 2 vor das [mm]\gamma[/mm] gemacht.

Du hast doch als Teilintegral:

[mm] $\gamma*\integral_1^3{1 \ dx} [/mm] \ = \ [mm] \gamma*\left[ \ x \ \right]_1^3 [/mm] \ = \ [mm] \gamma*[3-1] [/mm] \ = \ [mm] \gamma*2 [/mm] \ = \ [mm] 2*\gamma$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Stammfunktion von Polynomen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:49 Fr 17.03.2006
Autor: Esperanza

Hallo Loddar!

Danke für die Antwort, sie hat mir gut geholfen. Kannst du mir vielleicht noch erklären wie man so eine Partialbruchzerlegung macht? Hab sowas noch nie vorher gemacht. Brauch sozusagen mal ein Paradebeispiel :)

Gruß, Esperanza

Bezug
                        
Bezug
Stammfunktion von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Fr 17.03.2006
Autor: dormant

Hallo, Esperanza!

Zweck der Partialbruchzerlegung ist einen Nenner, der als Produkt dargestellt ist, "auseinander zu ziehen" und ihn so zu sagen als Summe darzustellen. Allgemein:

[mm] \bruch{Term_0}{Term_1*Term_2*...*Term_n}=\bruch{A}{Term_1}+\bruch{B}{Term_2}+...+\bruch{C}{Term_n}. [/mm]

Ziel ist eben die Ausdrücke für die Zähler zu bestimmen, so dass wenn man die Brüche aufaddiert, dann den ursprünglichen rauskriegt.

Wie man vorgeht zeig ich dir kurz an deinem Beispiel, es ist echt nicht so kompliziert:

Zu bestimmen sind A, B und C so dass gilt:

[mm] \bruch{1}{x^2\cdot{}(x+1)}=\bruch{A}{x}+\bruch{B}{x^2}+\bruch{C}{x+1} [/mm]

[mm] \gdw \bruch{1}{x^2\cdot{}(x+1)}=\bruch{Ax(x+1)+B(x+1)+C(x^{2})}{x^{2}(x+1)} [/mm]

[mm] \gdw 1=Ax^{2}+Ax+B(x+1)+Cx^{2} [/mm]

[mm] \gdw x^{2}(A+C)+x(A+B)+B-1=0. [/mm]

Ja und dann hoffen, dass die Lösung einfach ist. In diesem Fall sieht man eigentlich leicht, dass B=1, A=-1, C=1 die Gleichung löst.

Gruß,
dormant

Bezug
                                
Bezug
Stammfunktion von Polynomen: Fast verstanden
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 17.03.2006
Autor: Esperanza

Danke für die Antwort.

Aber ich check das immernoch ni so ganz. Bin da bissl langsam. Wenn unterm Bruchstrich Term1, Term2, Term3 hinkommt, dann ist bei mir [mm] x^2 [/mm] Term1 und (x+1) Term2. Woher kommt das einzelne x beim Term 1? Kann ich mir nicht erklären.

>In diesem Fall sieht man eigentlich leicht, dass B=1, A=-1, C=1 die Gleichung löst.

ähm....sorry wie geht das? Bin blind.

soll ich das irgendwie umstellen oder einfach was einsetzen?

Esperanza

Bezug
                                        
Bezug
Stammfunktion von Polynomen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:05 Sa 18.03.2006
Autor: felixf


> Danke für die Antwort.
>  
> Aber ich check das immernoch ni so ganz. Bin da bissl
> langsam. Wenn unterm Bruchstrich Term1, Term2, Term3
> hinkommt, dann ist bei mir [mm]x^2[/mm] Term1 und (x+1) Term2. Woher
> kommt das einzelne x beim Term 1? Kann ich mir nicht
> erklären.

Das Problem ist das dormants `Allgemein:' nicht ganz so allgemein war wie das, was er dann benutzt hat ;-) Wenn einer der Terme mit einer Vielfachheit $> 1$ vorkommt (z.B. der Term $x$ hat Vielfachkeit [mm] $\ge [/mm] 2$, da [mm] $x^2$ [/mm] vorkommt, und Vielfachheit [mm] $\le [/mm] 2$, da [mm] $x^3$ [/mm] nicht vorkommt, also ist die Vielfachheit genau 2) (und du musst aufpassen, dass du z.B. einen Term [mm] $x^2 [/mm] + 2 x + 1$ als $(x + [mm] 1)^2$ [/mm] schreiben kannst, also als den Term $x + 1$ mit Vielfachheit 2!), etwa das Polynom $p(x)$ mit Vielfachheit $n$, dann musst du folgendes Betrachten: [mm] $\frac{A_1}{p(x)^n} [/mm] + [mm] \frac{A_2}{p(x)^{n-1}} [/mm] + [mm] \dots [/mm] + [mm] \frac{A_n}{p(x)}$, [/mm] und danach die Summanden fuer die anderen Terme.

Ich hoff mal ich hab das jetzt nicht zu kompliziert ausgedrueckt :-)

> >In diesem Fall sieht man eigentlich leicht, dass B=1,
> > A=-1, C=1 die Gleichung löst.
>
> ähm....sorry wie geht das? Bin blind.

Also das die angaben die Gleichung loesen sieht man durch einsetzen.

Wenn deine Frage darauf abzielte, wie man die Loesung finden kann: Dazu brauchst du den Identitaetssatz fuer Polynome: Zwei Polynome stimmen genau dann fuer alle Werte ueberein, wenn ihre Koeffizienten gleich sind (und sie damit insb. den gleichen Grad haben). Wenn also [mm] $x^2 [/mm] (A + C) = x (A + B) + (B - 1) = 0$ sein soll fuer alle Werte von $x$, so ist dies aequivalent zu $A + C = 0 [mm] \wedge [/mm] A + B = 0 [mm] \wedge [/mm] B - 1 = 0$.

Und daraus kannst du sofort $B = 1$ (dritte Gleichung), $A = -1$ (zweite Gleichung) und $C = 1$ (erste Gleichung) ablesen. Im Allgemeinen wirst du so ein lineares Gleichungssystem erhalten, was du auf ganz normalen Wege loesen kannst.

Ansonsten schau doch auch mal []hier.

Hilft dir das weiter?

LG Felix



Bezug
                                                
Bezug
Stammfunktion von Polynomen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Sa 18.03.2006
Autor: Esperanza

Hallo Felix!

Danke jetzt versteh ich es schon besser! Mal sehen ob sowas in der Prüfung dran kommt.

Gruß, Esperanza

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]