www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stammfunktion bilden.
Stammfunktion bilden. < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion bilden.: Tipp, Hilfe
Status: (Frage) beantwortet Status 
Datum: 15:49 Sa 05.12.2009
Autor: DonnAA

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich habe ein kleines Problemchen bei der Bildung von Stammfunktionen.
und zwar muss ich folgendes Integral berechnen:
[mm] \integral_{-1}^{1}{\bruch{2}{(x+3)^2} dx} [/mm]

wie ich sowas ableiten würde weiß ich ja. Mit der Quotientenregel. Allerdings bin ich ratlos, wie ich mit Hilfe der Quotientenregel eine Stammfunktion bilden soll oder wie ich anders die Stammfunktion bilden könnte. Vielleicht kann mir da ja jemand helfen.


Außerdem hätte ich noch die Frage: Wann man sagt: "Berechnung einer Fläche" und wann man sagt "Berechnung eines Integrals". Ich dachte immer das wäre genau das gleiche?!

Vielen Dank schon mal :)


        
Bezug
Stammfunktion bilden.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Sa 05.12.2009
Autor: felixf

Hallo!

>  Ich habe ein kleines Problemchen bei der Bildung von
> Stammfunktionen.
>  und zwar muss ich folgendes Integral berechnen:
>  [mm]\integral_{-1}^{1}{\bruch{2}{(x+3)^2} dx}[/mm]
>  
> wie ich sowas ableiten würde weiß ich ja. Mit der
> Quotientenregel. Allerdings bin ich ratlos, wie ich mit
> Hilfe der Quotientenregel eine Stammfunktion bilden soll
> oder wie ich anders die Stammfunktion bilden könnte.
> Vielleicht kann mir da ja jemand helfen.

Nun, bei der Quotientenregel bekommst du doch ein Quadrat in den Nenner. Hier hast du ein Quadrat im Nenner, naemlich $(x + [mm] 3)^2$. [/mm] Also koennte dieser Bruch evtl. das Ergebnis der Quotientenregel sein?

Kannst ja mal versuchen eine moegliche Stammfunktion zu "raten" (mit dem was ich grad geschrieben hab), probier mal was ganz einfaches, leite es ab und gucke wie nah du dran gekommen bist.

> Außerdem hätte ich noch die Frage: Wann man sagt:
> "Berechnung einer Fläche" und wann man sagt "Berechnung
> eines Integrals". Ich dachte immer das wäre genau das
> gleiche?!

Nun, ein Integral ist nicht immer die Flaeche. Nimmst du z.B. $f(x) = [mm] \sin [/mm] x$ und die Flaeche zwischen $f(x)$ und der $x$-Achse, zwischen $x = 0$ und $x = 2 [mm] \pi$, [/mm] so erhaelst du einen positiven Wert. Berechnest du jedoch das Integral ueber $f(x)$, so erhaelst du 0. Also ist hier der Flaecheninhalt nicht gleich dem Integral. Der Flaecheninhalt ist allerdings gleich [mm] $\int_0^{2 \pi} [/mm] |f(x)| dx$. Hast du eine Idee, wo das Problem liegt?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]