Stammfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wie bildet man von f(x)= x*e hochx die Stammfunktion? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Könnt ihr mir das mal schritt für schritt erklären???
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:04 So 08.10.2006 | Autor: | clwoe |
Hi,
um von einem Produkt eine Stammfunktion zu finden, verwendet man normalerweise die partielle Integration. Bei diesem Term hier ist dieses recht einfach. Es gibt allerdings auch Funktionen wo man dieses Schema mehrmals anwenden muß, um zum Ergebnis zu kommen.
Nun zu deiner Funktion. Das Schema lautet ganz allgemein:
[mm] \integral_{a}^{b}{ \underbrace{f(x)}_{=u}*\underbrace{g(x)}_{=v'}dx}=u*v-\integral_{a}^{b}{\underbrace{f(x)}_{=u'}*\underbrace{g(x)}_{=v}dx} [/mm]
Das bedeutet, das ein Term zuerst als Ableitung gesehen wird und der andere als normaler Term. Zuerst muss also der eine Term integriert werden und der andere bleibt wie er ist. Davon wird das Produkt gebildet und das Integral vom selben Anfangsterm genommen, nur das diesmal die Ableitung des anderen Terms gebildet wird und mit dem schon gebildeten Integral des zweiten Terms multipliziert wird. Die Bezeichnungen unter den einzelnen Termen sollen zeigen, wie es genau gemacht wird und was einmal die Ableitung und was das Integral ist.
Man versucht immer den Term zuerst zu lassen und erst beim zweiten Integral abzuleiten, der eben beim ableiten herausfallen würde oder zu einer Konstanten werden würde, so das hinter dem letzten Integral dann sozusagen nur noch 1. Term steht, der leicht zu integrieren ist. Manchmal funktioniert das schon beim 1. Durchgang,manchmal aber auch erst beim zweiten oder dritten mal partiellem Integrieren.
Nun mal dein Term als Beispiel:
[mm] \integral_{a}^{b}{ \underbrace{x}_{=u}*\underbrace{e^{x}}_{=v'}dx}
[/mm]
[mm] =x*e^{x}-\integral_{a}^{b}{ \underbrace{1}_{=u'}*\underbrace{e^{x}}_{=v}dx}
[/mm]
[mm] =x*e^{x}-e^{x}+c=e^{x}(x-1)+c. [/mm] Das ist deine Stammfunktion. Die Konstante am Ende schreibt man noch dazu, da es ja viele Stammfunktionen einer Funktion geben kann.
Ich hoffe ich habe es verständlich rübergebracht. Dieses Schema verlangt viel Übung und einige Geschicklichkeit im Umgang mit den einzelnen Termen, da man nicht immer auf Anhieb sieht, was nun als erstes abgeleitet werden soll und was integriert werden soll. Man muß es einfach anhand von Aufgaben üben.
Gruß,
clwoe
|
|
|
|