www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Stammfkt. einer rationalen Fkt
Stammfkt. einer rationalen Fkt < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfkt. einer rationalen Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 25.09.2012
Autor: JoeSunnex

Aufgabe
[mm] $\int_{-1}^1 \frac{1}{2t^2+3}\,\mathrm [/mm] dt$

Hallo,

habe diesmal eine Frage zum Integrieren einer (gebrochen-)rationalen Funktion. Mir fällt nämlich keine Regel ein, die ich auf das obige "Monster" anwenden könnte. Partialbruchzerlegung würde komplexe Linearfaktoren ergeben $(t - i [mm] \cdot \sqrt{\frac{3}{2}})(t [/mm] + i [mm] \cdot \sqrt{\frac{3}{2}})$ [/mm] und das bringt mir kaum was. Substitution des Nenners durch u bringt auch nichts, da dann immer noch durch $4t$ geteilt wird und dies keine Konstante ist.
Laut wolframalpha ist die Stammfunktion: [mm] $\frac{arctan(\sqrt{\frac{2}{3}} \cdot x)}{\sqrt{6}}. [/mm] Ich habe jedoch keine Idee, wie man darauf kommen sollte und freue mich daher auf eure Ratschläge.  

Grüße
Joe

        
Bezug
Stammfkt. einer rationalen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 25.09.2012
Autor: schachuzipus

Hallo JoeSunnex,


> [mm]\int_{-1}^1 \frac{1}{2t^2+3}\,\mathrm dt[/mm]
>  Hallo,
>  
> habe diesmal eine Frage zum Integrieren einer
> (gebrochen-)rationalen Funktion. Mir fällt nämlich keine
> Regel ein, die ich auf das obige "Monster" anwenden
> könnte. Partialbruchzerlegung würde komplexe
> Linearfaktoren ergeben [mm](t - i \cdot \sqrt{\frac{3}{2}})(t + i \cdot \sqrt{\frac{3}{2}})[/mm]
> und das bringt mir kaum was.

Jo, das ist unschön ...

> Substitution des Nenners durch
> u bringt auch nichts, da dann immer noch durch [mm]4t[/mm] geteilt
> wird und dies keine Konstante ist.
> Laut wolframalpha ist die Stammfunktion:
> [mm]$\frac{arctan(\sqrt{\frac{2}{3}} \cdot x)}{\sqrt{6}}.[/mm] Ich
> habe jedoch keine Idee, wie man darauf kommen sollte und
> freue mich daher auf eure Ratschläge.  

Nun, du kennst sicher [mm]\int{\frac{1}{1+x^2} \ dx}=\arctan(x)+c[/mm]

Falls nicht, substituiere [mm]x=\tan(u)[/mm] ...

Darauf führe dein Integral zurück.

Klammere [mm]\frac{1}{3}[/mm] aus, dann hast du

[mm]\frac{1}{3}\int{\frac{1}{\frac{2}{3}t^2+1} \ dt}=\frac{1}{3}\int{\frac{1}{1+\left(\sqrt{\frac{2}{3}}t\right)^2} \ dt}[/mm]

Nun fällt dir sicher eine passende Substitution ein, um das auf [mm]\int{1/(1+x^2) \ dx}[/mm] zurückzuführen ...

>
> Grüße
>  Joe  

LG

schachuzipus


Bezug
                
Bezug
Stammfkt. einer rationalen Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:22 Di 25.09.2012
Autor: JoeSunnex

Danke schachuzipus, es ist einfacher als ich dachte :)

also nach deinem Schritt wäre die Substitution einfach: $u = t [mm] \cdot \sqrt{\frac{2}{3}}$ [/mm] => [mm] $\frac{1}{3} \int \frac{1}{1+u^2} \cdot \frac{du}{\sqrt{\frac{2}{3}}} [/mm] = [mm] \sqrt{\frac{1}{6}} \cdot [/mm] arctan(u) = [mm] \frac{arctan(t \cdot \sqrt{\frac{2}{3}})}{\sqrt{6}}$ [/mm]

Bezug
                        
Bezug
Stammfkt. einer rationalen Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:23 Di 25.09.2012
Autor: schachuzipus

Hallo nochmal,


> Danke schachuzipus, es ist einfacher als ich dachte :)
>  
> also nach deinem Schritt wäre die Substitution einfach: [mm]u = t \cdot \sqrt{\frac{2}{3}}[/mm]
> => [mm]\frac{1}{3} \int \frac{1}{1+u^2} \cdot \frac{du}{\sqrt{\frac{2}{3}}} = \sqrt{\frac{1}{6}} \cdot arctan(u) = \frac{arctan(t \cdot \sqrt{\frac{2}{3}})}{\sqrt{6}}[/mm]  [applaus]

So sieht's aus!

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]