www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Stabilisator,p-Sylow-Gruppe
Stabilisator,p-Sylow-Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stabilisator,p-Sylow-Gruppe: Frage!!
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:43 Fr 05.11.2004
Autor: Sinchen2306

Hallo zusammen!
Bin mal wieder echt planlos und wäre für ein paar Anregungen zu den folgenden Aufgaben dankbar:

1. Zeige, dass jede Gruppe G der Ordnung 30 oder 56 eine normale p-Sylow-Untergruppe H enthält mit 1 [mm] \not= [/mm] H und H [mm] \not= [/mm] G.

2. Sei K ein endlicher Körper der Charakteristik p>0. Sei GL(n,K) die Gruppe der invertierbaren (n,n)-Matrizen über K.

(i) Betrachte die Operation von GL(n,K) auf [mm] K^{n} [/mm]

          q: GL(n,K) x [mm] K^{n} \to K^{n} [/mm]
                     (A,v) [mm] \mapsto [/mm] A(v).
Berechne den Stabilisator von
                                                   [mm] e_{1} [/mm] = [mm] \vektor{1 \\ 0 \\ . \\ . \\ 0} [/mm]

(ii) Sei D [mm] \subset [/mm] GL(n,K) die Untergruppe der oberen Dreiecksmatrizen, deren Diagonalelemente gleich 1 sind. Ist D eine p-Sylow-Untergruppe?

3. Sei G eine Gruppe der Ordnung 21. Zeige, dass entweder G zyklisch ist oder dass G nichttriviale Elemente t und s enthält, für die [mm] t^{3} [/mm] = 1, [mm] s^{7} [/mm] = 1 und [mm] tst^{-1} [/mm] = [mm] s^{2} [/mm] gilt. Zeige, dass zwei Gruppen der Ordnung 21, die nicht zyklisch sind, isomorph sind.

4. Es sei G eine endliche Gruppe und H [mm] \subset [/mm] G ein Normalteiler. Außerdem sei H eine p-Gruppe für eine Primzahl p. Zeige, dass H in jeder p-Sylow-Gruppe von G enthalten ist.


Für jegliche Art von Tipps bin ich sehr dankbar.
VlG

        
Bezug
Stabilisator,p-Sylow-Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mo 08.11.2004
Autor: Julius

Hallo Sinchen!

Zu der dritten Aufgabe wurde hier ein heißer Tipp gegeben (mit dem die Aufgabe jetzt einfach zu Ende gelöst werden kann).

Zu den anderen Aufgaben wollen wir erst einmal eigene Ansätze von dir sehen. Wir werden kaum dein gesamtes Hausaufgabenblatt hier vorrechnen. Ein paar eigene Ideen wirst du ja wohl auch haben, oder?

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]