www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Spurabbildung
Spurabbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spurabbildung: Rang
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 06.10.2016
Autor: Pawcio

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Kann mir jemand weiterhelfen?
Warum bei der Spurabbildung
[mm] (a_{ij})\to \sum_{i=1}^n a_{ii} [/mm]
hat den Rang 1, also warum ist die dim des Bildes =1?

geht es darum, dass nur die einzelnen Einträge im Bild sind? Dadurch ist der Rang =1, oder soll ich was übersehen haben?

Danke
Paul

        
Bezug
Spurabbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Do 06.10.2016
Autor: angela.h.b.

Hallo,

[willkommenmr].

Die Spurabbildung bildet doch aus dem [mm] n^2-dimensionalen [/mm] Raum [mm] \IR^{n\times n} [/mm] in den eindimensionalen Raum [mm] \IR [/mm] ab.

Also kann der Rang der Abbildung höchstens 1 sein.
Ansonsten wär's die Nullabbildung, was offenbar nicht der Fall ist.

Dir ist klar, was die Abbildung macht?
Die Diagonalelemente der Matrix werden addiert.
Der Funktionswert ist also eine Zahl.

LG Angela

> Kann mir jemand weiterhelfen?
>  Warum bei der Spurabbildung
>  [mm](a_{ij})\to \sum_{i=1}^n a_{ii}[/mm]
>  hat den Rang 1, also
> warum ist die dim des Bildes =1?
>  
> geht es darum, dass nur die einzelnen Einträge im Bild
> sind? Dadurch ist der Rang =1, oder soll ich was übersehen
> haben?
>  
> Danke
> Paul


Bezug
                
Bezug
Spurabbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:37 Do 06.10.2016
Autor: Pawcio

ah ja stimmt! das ist das was ich übersehen habe!!

danke vielmals!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]