www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Spiegelung eines Dreiecks
Spiegelung eines Dreiecks < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spiegelung eines Dreiecks: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 So 21.04.2013
Autor: Delia00

Aufgabe
geg: A(3/2/-5), B(5/9/-2), C(4/5/2)

Aufgabe: Spiegele das Dreieck an der [mm] x_{1}-Achse. [/mm]
Bestimme die Eckpunkte des gespiegelten Dreiecks.

Hallo Zusammen,

ich habe das Dreieck gezeichnet und anschließend gespiegelt.

Beim Ablesen der Punkte gibt es doch mehrere Möglichkeiten.

Wie kann ich die Eckpunkte so bestimmen, dass das gespiegelte Dreieck kongruent zum Ausgangsdreieck ist??

Danke

        
Bezug
Spiegelung eines Dreiecks: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 So 21.04.2013
Autor: M.Rex

Hallo
> geg: A(3/2/-5), B(5/9/-2), C(4/5/2)

>

> Aufgabe: Spiegele das Dreieck an der [mm]x_{1}-Achse.[/mm]
> Bestimme die Eckpunkte des gespiegelten Dreiecks.
> Hallo Zusammen,

>

> ich habe das Dreieck gezeichnet und anschließend
> gespiegelt.

>

> Beim Ablesen der Punkte gibt es doch mehrere
> Möglichkeiten.

Beim Ablesen leider ja, aber vermutlich sollst du das ja auch berechnen.

>

> Wie kann ich die Eckpunkte so bestimmen, dass das
> gespiegelte Dreieck kongruent zum Ausgangsdreieck ist??

Die [mm] $x_1$-Achse [/mm] hat die Geradengleichung
[mm] g:\vec{x}=\vektor{0\\0\\0}+\lambda\cdot\vektor{1\\0\\0}=\lambda\cdot\vektor{1\\0\\0}=\vektor{\lambda\\0\\0} [/mm]


Bilde nun den Verbindungsvektor [mm] \vec{v_a} [/mm] von A zu einem beliebigen Punkt auf g, also:

[mm] \vec{v_a}=\vektor{\lambda\\0\\0}-\vektor{3\\2\\5}=\vektor{\lambda-3\\-2\\-5} [/mm]

Bestimme nun das [mm] \lambda [/mm] so, dass dieser Vektor senkrecht auf der Geraden steht, also dass
[mm] \vektor{\lambda-3\\-2\\-5}\perp\vektor{1\\0\\0} [/mm]
Dazu muss ja das Skalarprodukt Null sein, also muss gelten
[mm] \vektor{\lambda-3\\-2\\-5}\cdot\vektor{1\\0\\0}=0 [/mm]
[mm] \Leftrightarrow \lambda-3=0 [/mm]
[mm] \Leftrightarrow \lambda=3 [/mm]

Der Vektor [mm] \vektor{0\\-2\\-5} [/mm] ist also der senkrechte Verbindungsvektor von A auf die Gerade g. Mit

[mm] \vec{a'}=\vektor{3\\2\\5}+2\cdot\vektor{0\\-2\\-5} [/mm] bekommst du nun die Koordinaten des Bildpunktes A', denn du musst die Strecke von A auf g ja nur verdoppeln, damit du zu A' gelangst.

Dieselbe Rechnung fürhe nun für B' und C' aus.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]