www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Sphären
Sphären < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sphären: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 21.06.2005
Autor: Dschingis

Sei U  [mm] \cup \IR^{n} [/mm] eine offene teilmenge, welche die sphäre
[mm] S^{n-1} [/mm] = (x [mm] \in \IR^{n}; x^{2}_{1}+...+x^{2}_{n}=1) [/mm] umfasst.
zz: [mm] \exists \epsilon [/mm] >0, sodass alle [mm] y\in \IR^{n} [/mm] der form
y=tx mit |t-1|< [mm] \epsilon; [/mm] x [mm] \in S^{n-1} [/mm]  in U enthalten ist.

ich hab echt keinen schimmer was sphären angeht, hatten das zwar in der vorlesung, habs aber nicht wirklich verstanden wie kann ich die sphäre ausschlachten, damit ich das beweisen kann?
muß ich dabei die ganzen x'e einsetzen und dafür ein t bestimmten? oder ein bel. x aus der sphäre nehmen? brauche ich überhaupt die sphäreneigenschaften?

danke im voraus

greetz

dschingis

        
Bezug
Sphären: blutende Sphären
Status: (Antwort) fertig Status 
Datum: 07:36 Mi 22.06.2005
Autor: angela.h.b.

> Sei U  [mm]\cup \IR^{n}[/mm] eine offene teilmenge, welche die
> sphäre
> [mm]S^{n-1}[/mm] = (x [mm]\in \IR^{n}; x^{2}_{1}+...+x^{2}_{n}=1)[/mm]
> umfasst.
>  zz: [mm]\exists \epsilon[/mm] >0, sodass alle [mm]y\in \IR^{n}[/mm] der form
> y=tx mit |t-1|< [mm]\epsilon;[/mm] x [mm]\in S^{n-1}[/mm]  in U enthalten
> ist.
>  
> ...wie kann ich die sphäre ausschlachten, damit ich das
> beweisen kann?

Hallo Dschingis,
Messer wetzen, zustechen und Blut auffangen:

Daß U [mm] \subset \IR^{n} [/mm] offen ist, bedeutet, daß es zu jedem u [mm] \in [/mm] U ein  [mm] \varepsilon>0 [/mm] gibt, so daß die offene  [mm] \varepsilon-Kugel [/mm] um u in U liegt,
K(u, [mm] \varepsilon):= [/mm] {x [mm] \in IR^{n}| [/mm] d(x,u)< [mm] \varepsilon [/mm] } [mm] \subset [/mm] U.

Da  [mm] S^{n-1}\subset [/mm] U, gilt dies also insbesondere für die Elemente von [mm] S^{n-1}. [/mm]

Nimm nun ein beliebiges x aus der Sphäre:

Sei also x [mm] \in S^{n-1}. [/mm] Dann gibt es ein [mm] \varepsilon>0 [/mm] so, daß [mm] K(x,\varepsilon)\subset [/mm] U, weil U offen.

Betrachte nun y=tx mit [mm] |t-1|<\varepsilon. [/mm]
Berechne d(y,x)=... und folgere, daß [mm] y\in K(x,\varepsilon). [/mm]
==> y [mm] \in [/mm] U

Alles klar?


Bezug
                
Bezug
Sphären: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Mi 22.06.2005
Autor: Dschingis

ja danke,
habs verstanden, dann werd ich mal meine messer holen und zustechen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]