www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Spezielle Det. ausrechnen
Spezielle Det. ausrechnen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spezielle Det. ausrechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:40 Do 21.06.2007
Autor: Burdy

Aufgabe
Zeigen Sie, dass [mm] det(I+cd^T)=1+d^Tc [/mm] für I = Einheitsmatrix, c, d [mm] \in R^n [/mm] (stehende Vektoren)

Hallo, ich soll obige Gleichung beweisen, hab aber nicht so wirklich eine Idee, wie ich damit anfange.
Ich hab mir schon mal überlegt, dass [mm] d^{T}c [/mm] die Summe der Diagonale von [mm] cd^T [/mm] ist, aber kA ob das jetzt irgendwas mit der Lösung zu tun hat.

Ich wär für jede Idee, mit was für einem Ansatz ich das zeige dankbar.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Spezielle Det. ausrechnen: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:09 Fr 22.06.2007
Autor: Bastiane

Hallo Burdy!

> Zeigen Sie, dass [mm]det(I+cd^T)=1+d^Tc[/mm] für I = Einheitsmatrix,
> c, d [mm]\in R^n[/mm] (stehende Vektoren)
>  Hallo, ich soll obige Gleichung beweisen, hab aber nicht
> so wirklich eine Idee, wie ich damit anfange.
> Ich hab mir schon mal überlegt, dass [mm]d^{T}c[/mm] die Summe der
> Diagonale von [mm]cd^T[/mm] ist, aber kA ob das jetzt irgendwas mit
> der Lösung zu tun hat.

Vielleicht kannst du deine Matrix ja auf Dreiecksform bekommen, denn dann auch nur noch diese Elemente auf der Diagonalen stehen, bist du fertig, denn die Determinante einer Dreiecksmatrix ist das Produkt der Diagonalelemente. :-)

Ansonsten würde ich es einfach mal mit dem []Laplaceschen Entwicklungssatz versuchen. Evtl. findest du eine Rekursionsvorschrift bzw. eine Behauptung, die du dann damit per Induktion beweisen kannst.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Spezielle Det. ausrechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 23.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]