Spektrum einer Banachalgebra < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:39 Sa 28.08.2010 | Autor: | dazivo |
Hallo zusammen!
Momentan beschäftige ich mich ein bisschen mit Spektraltheorie. Hier wird das wichtige Resultat gezeigt, dass in jeder komplexen Banachalgebra mit Eins das Spektrum nicht leer sein kann. Als Gegenbeispiel wollte ich jedoch
eine Banachalgebra mit eins wo das Spektrum leer ist.
Die Schlussfolgerung aus dem obigen ist, dass man höchstens im reellen eine solche Algebra finden kann. Ich bringe jedoch kein solches Beispiel zustande.
Weiss jemand zufällig ein Gegenbeispiel?
Grüsse dazivo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:09 Sa 28.08.2010 | Autor: | felixf |
Moin davizo,
ich bin kein Experte, und in der Vorlesung die ich mal zum Thema gehoert hab haben wir nur Banachalgebren ueber [mm] $\IC$ [/mm] angeschaut, aber evtl. kann ich dir trotzdem helfen :)
> Momentan beschäftige ich mich ein bisschen mit
> Spektraltheorie. Hier wird das wichtige Resultat gezeigt,
> dass in jeder komplexen Banachalgebra mit Eins das Spektrum
> nicht leer sein kann. Als Gegenbeispiel wollte ich jedoch
> eine Banachalgebra mit eins wo das Spektrum leer ist.
> Die Schlussfolgerung aus dem obigen ist, dass man
> höchstens im reellen eine solche Algebra finden kann. Ich
> bringe jedoch kein solches Beispiel zustande.
> Weiss jemand zufällig ein Gegenbeispiel?
Ich glaube der wichtige Punkt ist, dass das Spektrum eine Teilmenge vom Grundkoerper ist -- also bei einer reellen Banachalgebra eine Teilmenge von [mm] $\IR$.
[/mm]
Wenn du dir jetzt z.B. die reelle Banachalgebra der $n [mm] \times [/mm] n$-Matrize ueber [mm] $\IR$ [/mm] anschaust (diese hat eine Eins), so gibt es da sicher Matrizen, die keine reellen Eigenwerte haben -- und somit ein leeres Spektrum.
Ich vermute allerdings, dass man eine reelle Banachalgebra "komplexifizieren" kann, also eindeutig in eine kleinste komplexe Banachalgebra einbetten kann, so dass z.B. das reelle Spektrum gerade das komplexe Spektrum geschnitten mit [mm] $\IR$ [/mm] ist. In dem Fall bekommt man natuerlich, dass das komplexe Spektrum immer [mm] $\neq \emptyset$ [/mm] ist (nach deinem oben erwaehnten Satz). Das ganze ist aehnlich wie in der linearen Algebra bei Matrizen: dort schaut man sich ja auch bei reellen Matrizen komplexe Eigenwerte an, obwohl $A - [mm] \lambda [/mm] I$ fuer komplexes [mm] $\lambda$ [/mm] keine reelle Matrix ist und somit strenggenommen keinen Sinn macht :)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:05 So 29.08.2010 | Autor: | dazivo |
Hallo Felix
Ich habe mir schon gedacht, dass da die BA der reellen Matrizen reichen.
Mich hat intuitiv gestört, dass es ein operator $A$ geben soll mit [mm] $\lambda [/mm] Id - A$ für jedes [mm] $\lambda \in \IR$ [/mm] invertierbar. Aber im Nachhinein ist
$A := [mm] \pmat{ 0 & -1 \\ 1 & 0 }$ [/mm] das gewünschte Gegenbeispiel, denn das charakteristische Polynom ist [mm] $\lambda^2 [/mm] + 1$.
Danke vielmals für deine Hilfe
Gruss dazivo
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:19 So 29.08.2010 | Autor: | felixf |
Moin davizo,
> Ich habe mir schon gedacht, dass da die BA der reellen
> Matrizen reichen.
> Mich hat intuitiv gestört, dass es ein operator [mm]A[/mm] geben
> soll mit [mm]\lambda Id - A[/mm] für jedes [mm]\lambda \in \IR[/mm]
> invertierbar. Aber im Nachhinein ist
> [mm]A := \pmat{ 0 & -1 \\
1 & 0 }[/mm] das gewünschte
> Gegenbeispiel, denn das charakteristische Polynom ist
> [mm]\lambda^2 + 1[/mm].
noch einfacher: nimm die Banach-Algebra [mm] $\IC$ [/mm] ueber [mm] $\IR$: [/mm] jedes Element aus [mm] $\IC \setminus \IR$ [/mm] hat leeres Spektrum.
> Danke vielmals für deine Hilfe
Bitte :)
LG Felix
|
|
|
|