www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Spannvektoren
Spannvektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Spannvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 So 09.12.2007
Autor: hase-hh

Aufgabe
Sei Q ein Körper der rationalen Zahlen. Wir betrachten im Q-Vektorraum [mm] Q^3 [/mm] die beiden Vektoren

v= [mm] \vektor{1 \\ 2 \\ 3} [/mm]    und    w= [mm] \vektor{4 \\ 5 \\ 6} [/mm]


Für welches s [mm] \in [/mm] Q ist ( [mm] \vektor{6 \\ s \\ 12} [/mm] )  [mm] \in span_{Q} [/mm] (v,w) ?

Guten Tag!

Die anderen Teilaufgaben, die ich nur kurz anreissen möchte, habe ich mithilfe der linearen Abhängigkeit gelöst...

a) Für welches s  [mm] \in [/mm] Q liegt  [mm] \vektor{0 \\ -3 \\ s} [/mm]  im Erzeugnis von v, w?

Für s= -6  kann ich den vektor als linearkombination von v, w darstellen...

b) Für welches s [mm] \in [/mm] Q  ist [mm] \vektor{s \\ -1\\ -3}, [/mm] v, w keine BAsis von [mm] Q^3 [/mm] ?

Für s= 1  sind die vektoren linear abhängig.

Kann es sein, dass bei der o.g. Aufgabe auch eine Prüfung auf lineare Abhängigkeit durchgeführt werden muss?

D.h. wenn ich ein Gleichungssystem aufstellen kann, das

lösbar ist für ein bestimmtes s, heisst das dann auch, dass der Vektor [mm] \vektor{6 \\ s \\ 12} [/mm] in der von v, w aufgespannten Ebene liegt?

[mm] \vektor{6 \\ s \\ 12} [/mm] = r* [mm] \vektor{1 \\ 2 \\ 3} [/mm] + t* [mm] \vektor{4 \\ 5 \\ 6} [/mm]

lösbar für s= 9

Kann ich so vorgehen? Wie ist die Frage sonst zu verstehen?

Danke für eure Hilfe!

Gruß
Wolfgang







        
Bezug
Spannvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mi 12.12.2007
Autor: angela.h.b.


> Sei Q ein Körper der rationalen Zahlen. Wir betrachten im
> Q-Vektorraum [mm]Q^3[/mm] die beiden Vektoren
>  
> v= [mm]\vektor{1 \\ 2 \\ 3}[/mm]    und    w= [mm]\vektor{4 \\ 5 \\ 6}[/mm]
>  
>
> Für welches s [mm]\in[/mm] Q ist ( [mm]\vektor{6 \\ s \\ 12}[/mm] )  [mm]\in span_{Q}[/mm]
> (v,w) ?

> [mm]\vektor{6 \\ s \\ 12}[/mm] = r* [mm]\vektor{1 \\ 2 \\ 3}[/mm] + t*
> [mm]\vektor{4 \\ 5 \\ 6}[/mm]
>  
> lösbar für s= 9
>
> Kann ich so vorgehen? Wie ist die Frage sonst zu verstehen?

Hallo,

Du hast es richtig gemacht.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]