www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Span von Vektoren
Span von Vektoren < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Span von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:15 So 12.02.2012
Autor: omarco

Aufgabe
1. Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt immer [mm] span(v_{1}) \cup span(v_{2}) [/mm] = [mm] span(v_{1}, v_{2}). [/mm]

2.  Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt immer [mm] span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}). [/mm]



Also ich weis, dass die Antwort bei beiden nein heißt. Meine Frage: Gibt es einen Fall wo die 1. oder 2. gehen

Bei der 1 Könnte ich den Nullvektor nehmen. Der würde in beiden drin sein span [mm] span(v_{1}),span(v_{2})drin [/mm] sein und in [mm] span(v_{1}, v_{2}) [/mm] oder ? Gibt es noch einen anderen Vektor der dieses Kriterium auch erfüllt.

Gibt es bei der 2. ein Vektorpaar, dass das Kriterium erfüllt? Mir fällt kein Beispiel ein ?

Also im eigentliche Sinne beschäftige ich mich mit der Fragestellung:
1. Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt für einen Fall [mm] span(v_{1}) \cup span(v_{2}) [/mm] = [mm] span(v_{1}, v_{2}). [/mm]

2.  Es seien [mm] v_{1},v_{2} \in \IR^{n} [/mm] , dann gilt für einen Fall [mm] span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}). [/mm]



        
Bezug
Span von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 So 12.02.2012
Autor: wieschoo


> 1. Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt immer
> [mm]span(v_{1}) \cup span(v_{2})[/mm] = [mm]span(v_{1}, v_{2}).[/mm]
>  
> 2.  Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt immer
> [mm]span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}).[/mm]
>  
>
> Also ich weis, dass die Antwort bei beiden nein heißt.
> Meine Frage: Gibt es einen Fall wo die 1. oder 2. gehen

Gut

>  
> Bei der 1 Könnte ich den Nullvektor nehmen. Der würde in
> beiden drin sein span [mm]span(v_{1}),span(v_{2})drin[/mm] sein und
> in [mm]span(v_{1}, v_{2})[/mm] oder ? Gibt es noch einen anderen
> Vektor der dieses Kriterium auch erfüllt.

Damit hast du doch noch keine Gleichheit. Du hast lediglich einen Vektor gefunden, der in beiden "span" drin liegt.
Oder meinst du [mm] $v_1=v_2=0$? [/mm]
Dann passt das ja. im [mm] $\IR^2$ [/mm] nimmst du zwei parallele Geraden.

>
> Gibt es bei der 2. ein Vektorpaar, dass das Kriterium
> erfüllt? Mir fällt kein Beispiel ein ?

Für [mm] $\IR^2$ [/mm] kannst du die Koordinatenachsen nehmen. Der Punkt (1,1) liegt werder in span(1,0) noch in span(0,1) aber in span((0,1),(1,0)).

>
> Also im eigentliche Sinne beschäftige ich mich mit der
> Fragestellung:
>  1. Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt für einen
> Fall [mm]span(v_{1}) \cup span(v_{2})[/mm] = [mm]span(v_{1}, v_{2}).[/mm]

bildlich in [mm] $\IR^2$: [/mm] parallele Geraden

>  
> 2.  Es seien [mm]v_{1},v_{2} \in \IR^{n}[/mm] , dann gilt für einen
> Fall [mm]span(v_{1}) \cup span(v_{2}) \not= span(v_{1}, v_{2}).[/mm]

bildlich in [mm] $\IR^2$: [/mm] Koordinatenachsen

>

gruß
wieschoo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]