www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Sobolev-Räume
Sobolev-Räume < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sobolev-Räume: Wieso L^p
Status: (Frage) beantwortet Status 
Datum: 23:27 Mi 17.08.2011
Autor: no_brain_no_pain

Meine Frage ist eigentlich einfach. Warum braucht man zur DEfinition der Sobolev-Räume p-mal integrierbare Funktionen? Hängt das irgendwie damit zusammen, dass sonst die Funktionen $ f [mm] \* D^{\alpha} [/mm] g$, die ja unter dem Integral der schwachen Ableitung stehen nicht integrierbar sind oder reicht da schon $f [mm] \in L^2$ [/mm] und $g$ unendlich oft differenzierbar mit kompaktem Träger?

        
Bezug
Sobolev-Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 19.08.2011
Autor: MatthiasKr

Hallo,

naja, die verschiedenen p-Werte repräsentieren ja auch die Regularität der
Funktionen in [mm] $H^{m,p}$. [/mm] Generell kann man sagen, dass mit wachsendem p auch die Regularität der entsprechenden Sobolev-Funktionen grösser wird.
Zum Beispiel lassen sich zu bestimmten partiellen Differentialgleichungen die Lösungen nur in bestimmten Sobolev-Räumen finden und nicht immer in [mm] $H^m=H^{m,2}$. [/mm]

Gruss
Matthias

Bezug
                
Bezug
Sobolev-Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Fr 19.08.2011
Autor: no_brain_no_pain

Hallo, danke für die Antwort. Noch eine Frage dazu. Was genau meinst du mit Regularität?
Mittlerweile habe ich auch festgestellt, dass der Funktionraum, ja auch nur so vollständig wird und man außerdem die Sobolevfunktionen schön mit klassischen glatten Funktionen approximieren kann, was z.B. bei der Definition von Randwerten (Spursatz) hilft.

Bezug
                        
Bezug
Sobolev-Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 20.08.2011
Autor: MatthiasKr

Regularität bedeutet so etwas ähnliches wie ´Glattheit´. Zum Beispiel besitzt eine unendlich oft diffbare funktion im allgemeinen eine höhere regularität als eine nurmehr integrierbare. Oder eine Lipschitz-stetige funktion ist regulärer als eine ´nur´stetige.

Bezug
                                
Bezug
Sobolev-Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:12 So 21.08.2011
Autor: no_brain_no_pain

Vielen Dank. Denke über den Begriff der Regularität werde ich ohnehin bald stolpern.
Grüße Andre

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]