www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Skat-Spiel, W'keit Ass ziehen
Skat-Spiel, W'keit Ass ziehen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skat-Spiel, W'keit Ass ziehen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:36 Sa 02.07.2016
Autor: ChopSuey

Aufgabe
Zwei Spieler A und B ziehen (unabhängig voneinander) aus einem gut durchmischten Skatspiel
(32 verschiedene Karten, eine davon ein Herz-As, eine zweite ein Karo-As)
abwechselnd eine Karte ohne Zurücklegen. Spieler A beginnt. Wer zuerst das Herz-As oder
das Karo-As zieht, hat gewonnen. Ist nach dem Ziehen der 5. Karte noch kein Sieger ermittelt,
so wird das Spiel beendet.

a) Die Zufallsvariable X beschreibe die Anzahl der in einem Spiel gezogenen Karten.
Man bestimme die Verteilung der Zufallsvariablen X und skizziere ihre Verteilungsfunktion.

b) Wie groß ist die Wahrscheinlichkeit [mm] $p_A$ [/mm] bzw [mm] $p_B$ [/mm] dass Spieler A bzw. Spieler B
gewinnt?

Hallo,

ich habe Schwierigkeiten, die Aufgabe b) zu Lösen. Vermutlich ist sie nicht weiter schwer, aber ich komme trotzdem nicht zur zündenden Idee.

Spieler A ist am ersten, dritten und fünften Zug an der Reihe.
Spieler B entsprechend am zweiten und vierten Zug.

Nun ist die Wahrscheinlichkeit dass Spieler A beim ersten Zug gewinnt einfach $ P(X=1) = [mm] \frac{2}{32} [/mm] = [mm] \frac{1}{16}$. [/mm]
Dass Spieler B beim zweiten Zug gewinnt entsprechend $ P(X=2) = [mm] \frac{15}{16}*\frac{2}{31}$ [/mm] usw.

Wie bestimmte ich nun aber die Wahrscheinlichkeit für jeden Spieler, mit der sie Gewinnen? Kann ich die einzelnen Wahrscheinlichkeiten denn einfach aufsummieren? Also etwa

Wahrscheinlichkeit dass Spieler A gewinnt $ P(X=1)+P(X=3)+P(X=5)$ ?

Ich komme hier einfach nicht auf einen grünen Zweig. Bringt mich die hypergeometrische Verteilung denn zum Ziel? Muss ich diese ggf. modifizieren?

Freue mich über jeden Hinweis!

LG,
ChopSuey

        
Bezug
Skat-Spiel, W'keit Ass ziehen: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:45 So 03.07.2016
Autor: ChopSuey

Hallo,

ich habe nun die Lösung zur Aufgabe. Tatsächlich summiert man die Wahrscheinlichkeiten einfach auf.

Es ist $ [mm] p_A [/mm] = [mm] P(X=1)+P(X=3)+P(X=5)*(\frac{2}{28})$ [/mm]

Der Vollständigkeit wegen, hab ich das hier noch hinzugefügt.

Vielen Dank
ChopSuey



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]