www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarproduktraum
Skalarproduktraum < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarproduktraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Sa 29.10.2011
Autor: engels

Aufgabe
Sei V der Skalarproduktraum C([-1; 1]) mit dem Skalarprodukt [mm] \integral_{-1}^{1}{f(x)g(x) dx} [/mm]

a) Wenden Sie das Gram-Schmidt-Verfahren auf die Funktionen [mm] f_{0}(x) [/mm] = 1, [mm] f_{1}(x) [/mm] = x und [mm] f_{2}(x) [/mm] = [mm] x^{2} [/mm] an.

b) Bestimmen Sie die orthogonale Projektion der Funktion g(x) = sin x auf den von [mm] f_{0}, f_{1} [/mm] und [mm] f_{2} [/mm] aufgespannten
Unterraum von V .

Also das Gram-Schmidt-Verfahren kenne ich, habe es bisher auf Vektoren angewendet und weiß jetzt absolut nicht was ich machen soll.

Könnte mir einer vielleicht an einem Beispiel erklären, was man machen muss?


        
Bezug
Skalarproduktraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 Sa 29.10.2011
Autor: Valerie20


> Sei V der Skalarproduktraum C([-1; 1]) mit dem
> Skalarprodukt [mm]\integral_{-1}^{1}{f(x)g(x) dx}[/mm]
>  
> a) Wenden Sie das Gram-Schmidt-Verfahren auf die Funktionen
> [mm]f_{0}(x)[/mm] = 1, [mm]f_{1}(x)[/mm] = x und [mm]f_{2}(x)[/mm] = [mm]x^{2}[/mm] an.
>  
> b) Bestimmen Sie die orthogonale Projektion der Funktion
> g(x) = sin x auf den von [mm]f_{0}, f_{1}[/mm] und [mm]f_{2}[/mm]
> aufgespannten
>  Unterraum von V .
>  Also das Gram-Schmidt-Verfahren kenne ich, habe es bisher
> auf Vektoren angewendet und weiß jetzt absolut nicht was
> ich machen soll.
>  
> Könnte mir einer vielleicht an einem Beispiel erklären,
> was man machen muss?
>  

Hallo!
Du betrachtest hier den Vektorraum der Polynome 2. Grades.
Die Definition deines Skalarproduktes hast du bereits hingeschrieben.

> Skalarprodukt <f(x),g(x)>= [mm]\integral_{-1}^{1}{f(x)g(x) dx}[/mm]

zuerst gilt: <f1,f1> = [mm] \integral_{-1}^{1}{f(x)f(x) dx}=2 [/mm]

dann: <f1,f2> wieder das Integral berechnen und Gram Schmitt anwenden.
Berechne danach f2(n) n soll für normiert stehen.
Dann den Betrag von f2(n)
Hier musst du allerdings beachten: ||f2(n) || ^{2} =  [mm] \integral_{-1}^{1}{f2(n) f2(n) dx}= [/mm]

usw...


Bezug
                
Bezug
Skalarproduktraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 Sa 29.10.2011
Autor: engels

Mein Problem ist ja grade, dass ich nicht weiß, wie ich das Gram-Schmidt-Verfahren auf f0,f1,f2 anwenden soll.

Bezug
                        
Bezug
Skalarproduktraum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Sa 29.10.2011
Autor: Valerie20


> Mein Problem ist ja grade, dass ich nicht weiß, wie ich
> das Gram-Schmidt-Verfahren auf f0,f1,f2 anwenden soll.

Genau so wie wenn du Vektoren hättest.
Das System funktioniert genau so.

[mm] n_{1}=f_{1} [/mm]

[mm] n_{2}=f_{2}-\bruch{}{||n_{1}||^{2}}*n_{1} [/mm]

....
Im ersten post habe ich dir bereits geschrieben wie der Betrag in diesem Fall zu berechnen ist.





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]