www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukte
Skalarprodukte < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukte: Aufgabe Übungsblatt
Status: (Frage) beantwortet Status 
Datum: 17:53 Mi 13.04.2011
Autor: tmili

Aufgabe
Für welche Werte [mm] \alpha \in \IR [/mm] ist durch [mm] =<\vektor{x1 \\ x2},\vektor{y1 \\ y2}> [/mm] =  x1y1 + [mm] \alpha [/mm] x1y2 + [mm] \alpha [/mm] x2y1 + 7x2y2 ein Skalarprodukt auf [mm] \IR [/mm] ²definiert?

kann mir jemand einen tipp geben wie man auf die alphas kommt?
wir haben in unserem skript ein ähnliches beispiel nur leider ohne erklärung mit den "Vorzahlen" 1,5,5,26...weiß aber leider auch garnicht mehr wie wir da draufkamen :(
bin für jede hilfe dankbar!!
lg tamara

        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> Für welche Werte [mm]\alpha \in \IR[/mm] ist durch
> [mm]=<\vektor{x1 \\ x2},\vektor{y1 \\ y2}>[/mm] =  x1y1 +
> [mm]\alpha[/mm] x1y2 + [mm]\alpha[/mm] x2y1 + 7x2y2 ein Skalarprodukt auf [mm]\IR[/mm]
> ²definiert?
>  kann mir jemand einen tipp geben wie man auf die alphas
> kommt?
>  wir haben in unserem skript ein ähnliches beispiel nur
> leider ohne erklärung mit den "Vorzahlen" 1,5,5,26...weiß
> aber leider auch garnicht mehr wie wir da draufkamen :(
>  bin für jede hilfe dankbar!!


Nun, das Skalarprodukt muss positiv definit sein, d.h.

[mm]=<\vektor{x1 \\ x2},\vektor{x1 \\ x2}> = x1*x1 + \alpha x1*x2 + \alpha x2*x1 + 7*x2*x2 \ge 0[/mm]

Das Skalarprodukt ist dann nun nur dann 0, wenn [mm]\pmat{x1 \\ x2}=\pmat{0 \\ 0}[/mm].

Alternativ kannst Du die Eigenwerte der Matrix

[mm]\pmat{1 & \alpha \\ \alpha & 7}[/mm]

berechnen.

Diese Eigenwerte müssen alle positiv sein.


>  lg tamara


Gruss
MathePower

Bezug
                
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 13.04.2011
Autor: tmili

also irgendwie versteh ich nur bahnhof..sorry :(
warum hast du jetzt <x,x> genommen statt <x,y> und wie soll ich auf das [mm] \alpha [/mm] kommen wenn ich von dieser matrix eigenwerte ausrechne?
oh man semesterferien sind was ganz ganz schlimmes^^ mein kopf ist wie gelöscht...

Bezug
                        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> also irgendwie versteh ich nur bahnhof..sorry :(
>  warum hast du jetzt <x,x> genommen statt <x,y> und wie

Weil das das Betragsquadrat eines Vektors ist,
und dieser Betrag muss größer gleich Null sein.


> soll ich auf das [mm]\alpha[/mm] kommen wenn ich von dieser matrix
> eigenwerte ausrechne?


Die Eigenwerte sind abhängig von [mm]\alpha[/mm]

Dann weisst Du, daß diese Eigenwerte positiv sein müssen.
Hieraus ergibt sich eine Bedingung an das [mm]\alpha[/mm].


>  oh man semesterferien sind was ganz ganz schlimmes^^ mein
> kopf ist wie gelöscht...


Gruss
MathePower

Bezug
                
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Mi 13.04.2011
Autor: tmili

ok das klingt einleuchtend :)
schonmal danke...nur beim ausrechnen der eigenwerte bin ich dann auf das nächste problem gestoßen :(

-> durch das nullsetzen des charakteristischen polynoms kam ich auf folgende zeile :
[mm] \lambda²-8\lambda [/mm] + 7- [mm] \alpha²=0 [/mm]
und dann durch die mitternachtsformel auf folgende zwei eigenwerte:
[mm] \lambda1/2= (8\pm \wurzel {36+\alpha²})/2 [/mm]
und dann durch das größer null setzen komm ich auf die bedingungen dass [mm] \alpha [/mm] einmal größer und einmal kleiner [mm] \wurzel{28} [/mm] sein müssen...
da kann was nicht stimmen..wär liebe wenn du nochmal drüber schaust!
vielen dank!!

Bezug
                        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> ok das klingt einleuchtend :)
>  schonmal danke...nur beim ausrechnen der eigenwerte bin
> ich dann auf das nächste problem gestoßen :(
>  
> -> durch das nullsetzen des charakteristischen polynoms kam
> ich auf folgende zeile :
>  [mm]\lambda²-8\lambda[/mm] + 7- [mm]\alpha²=0[/mm]
>  und dann durch die mitternachtsformel auf folgende zwei
> eigenwerte:
>  [mm]\lambda1/2= (8\pm \wurzel {36+\alpha²})/2[/mm]

Nach der Mitternachtsformel ergibt sich doch:

[mm]\lambda_{1,2}=\bruch{-\left(-8\right)\pm\wurzel{\left(-8\right)^{2}-4*\left(7-\alpha^{2}\right)}}{2}[/mm]

Demnach:

[mm]\lambda_{1,2}=\bruch{8\pm\wurzel{64-28+4*\alpha^{2}}}{2}=\bruch{8\pm\wurzel{36+\red{4}*\alpha^{2}}}{2}[/mm]

Daher hast Du unter der Wurzel einen Faktor 4 beim [mm] [mm[\apha^{2}[/mm] [/mm] vergessen.


>  und dann durch
> das größer null setzen komm ich auf die bedingungen dass
> [mm]\alpha[/mm] einmal größer und einmal kleiner [mm]\wurzel{28}[/mm] sein
> müssen...
>  da kann was nicht stimmen..wär liebe wenn du nochmal
> drüber schaust!
>  vielen dank!!


Gruss
MathePower

Bezug
                                
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Mi 13.04.2011
Autor: tmili

autsch stimmt natürlich..danke :)
jetzt hab ich dann für [mm] \alpha [/mm] einmal größer und einmal kleiner 7 heraus..heißt das dann, dass es für [mm] \alpha=7 [/mm] ein skalarprodukt ist?
liebe grüße

Bezug
                                        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:01 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> autsch stimmt natürlich..danke :)
>  jetzt hab ich dann für [mm]\alpha[/mm] einmal größer und einmal
> kleiner 7 heraus..heißt das dann, dass es für [mm]\alpha=7[/mm]


Rechne das mal nach, und prüfe die Eigenwerte für [mm]\alpha > 7[/mm]


> ein skalarprodukt ist?


Nein, das heisst es nicht.


>  liebe grüße


Gruss
MathePower

Bezug
                                                
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 13.04.2011
Autor: tmili

hey ich hoffe ich bringe dich nicht noch auf die palme heute abend!
was soll ich nachrechnen? und soll ich [mm] \alpha>7 [/mm] in die Eigenwerte einsetzen? oh man ich fühl mich grad echt heilos überfordert :(
wäre lieb, wenn du mir nochmal helfen würdest!!
liebe grüße

Bezug
                                                        
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> hey ich hoffe ich bringe dich nicht noch auf die palme
> heute abend!
>  was soll ich nachrechnen? und soll ich [mm]\alpha>7[/mm] in die
> Eigenwerte einsetzen? oh man ich fühl mich grad echt


Ein beliebiges [mm]\alpha > 7[/mm] in die Formeln
für die Eigenwerte einsetzten und auf größer 0 überprüfen.


> heilos überfordert :(
>  wäre lieb, wenn du mir nochmal helfen würdest!!
>  liebe grüße


Gruss
MathePower

Bezug
                                                        
Bezug
Skalarprodukte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 13.04.2011
Autor: tmili

oh kann das sein, dass ich mich schon wieder verrechnet habe^^
da kommt beim auflösen doch raus [mm] \alpha [/mm] größer bzw kleiner [mm] \wurzel{7}...was [/mm] den hauptkonflikt bei mir nur leider auch nicht ändert :(

Bezug
                                                                
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> oh kann das sein, dass ich mich schon wieder verrechnet
> habe^^
>  da kommt beim auflösen doch raus [mm]\alpha[/mm] größer bzw
> kleiner [mm]\wurzel{7}...was[/mm] den hauptkonflikt bei mir nur
> leider auch nicht ändert :(


Es kann nur eine Bedinung erfüllt werden.


Gruss
MathePower

Bezug
                                                                        
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Mi 13.04.2011
Autor: tmili

nochmal kurz zu meiner mitteilung...wenn man [mm] \lambda1 [/mm] = [mm] (8+\wurzel{36+4\alpha²})/2>0 [/mm] auflöst kommt für [mm] \alpha>\wurzel{7} [/mm] raus.
also hab ich jetzt dein tipp ausgeführt und einmal für [mm] \alpha [/mm] größer und einmal für kleiner [mm] \wurzel{7} [/mm] in die zwei eigenwerte eingesetzt und siehe da, es sind nur beide größer null bei [mm] \alpha [/mm] < [mm] \wurzel [/mm] {7}     :)
stimmt das?
vielen lieben dank im vorraus!!

Bezug
                                                                                
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:45 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> nochmal kurz zu meiner mitteilung...wenn man [mm]\lambda1[/mm] =
> [mm](8+\wurzel{36+4\alpha²})/2>0[/mm] auflöst kommt für
> [mm]\alpha>\wurzel{7}[/mm] raus.
>  also hab ich jetzt dein tipp ausgeführt und einmal für
> [mm]\alpha[/mm] größer und einmal für kleiner [mm]\wurzel{7}[/mm] in die
> zwei eigenwerte eingesetzt und siehe da, es sind nur beide
> größer null bei [mm]\alpha[/mm] < [mm]\wurzel[/mm] {7}     :)
>  stimmt das?

Es gibt zwei Eigenwerte:

[mm]\lambda_{1}=\bruch{8-\wurzel{36+4\alpha^{2}}}{2}[/mm]

[mm]\lambda_{2}=\bruch{8+\wurzel{36+4\alpha^{2}}}{2}[/mm]

Setze [mm]\alpha > \wurzel{7}[/mm] in [mm]\lambda_{1}[/mm] ein.
Wähle hier z.B [mm]\alpha=3[/mm].


>  vielen lieben dank im vorraus!!


Gruss
MathePower

Bezug
                                                                                        
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mi 13.04.2011
Autor: tmili

ja genau das gleiche beispiel habe ich auch gerechnet mit [mm] \alpha=3...dann [/mm] ist der erste eigenwert jedoch kleiner null, was also heißt, dass diese bedingung für [mm] \alpha [/mm] nicht stimmen kann.
durch das nullsetzen des anderen eigenwertes habe ich ja aber auch noch die bedingung, dass [mm] \alpha<\wurzel{7} [/mm] sein soll und wenn man da als beispiel [mm] \alpha=2 [/mm] in beide eigenwerte einsetzt, dann sind beide positiv...was ja richtig wäre..nur verwirrend finde ich, dass ich dann in einen eigenwert ein [mm] \alpha [/mm] einsetze was ich durchs nullsetzen schon ausgeschlossen habe :(

Bezug
                                                                                                
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:14 Mi 13.04.2011
Autor: MathePower

Hallo tmili.

> ja genau das gleiche beispiel habe ich auch gerechnet mit
> [mm]\alpha=3...dann[/mm] ist der erste eigenwert jedoch kleiner
> null, was also heißt, dass diese bedingung für [mm]\alpha[/mm]
> nicht stimmen kann.
>  durch das nullsetzen des anderen eigenwertes habe ich ja
> aber auch noch die bedingung, dass [mm]\alpha<\wurzel{7}[/mm] sein
> soll und wenn man da als beispiel [mm]\alpha=2[/mm] in beide
> eigenwerte einsetzt, dann sind beide positiv...was ja
> richtig wäre..nur verwirrend finde ich, dass ich dann in
> einen eigenwert ein [mm]\alpha[/mm] einsetze was ich durchs
> nullsetzen schon ausgeschlossen habe :(


Das habe ich Dich nur machen lassen,
um Dir zu zeigen, daß nur eine Bedingung zu trifft.

Nach den obigen Ausführungen ist nur
die Bedingung [mm]\vmat{\alpha} < \wurzel{7}[/mm]  richtig.


Gruss
MathePower

Bezug
                                                                                                        
Bezug
Skalarprodukte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mi 13.04.2011
Autor: tmili

ja nach den rechnungen ist mir das auch ersichtlich :)
aber verwirrend finde ich immer noch warum ich in einen eigenwert bei dem durch nullsetzen die bedingung rauskam dass [mm] \alpha>\wurzel{7} [/mm] sein muss, das gegenteilige einsetzen muss.
meine letzte frage für heute abend - dann hast du deine ruhe ;) - ist jetzt noch warum du den betrag von [mm] \alpha [/mm] nimmst für die lösung..also [mm] |\alpha|>\wurzel{7} [/mm] und nicht nur [mm] \alpha>\wurzel{7}? [/mm]
wünsche dir noch einen schönen abend und vielen lieben dank für deine hilfe!

Bezug
                                                                                                                
Bezug
Skalarprodukte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mi 13.04.2011
Autor: MathePower

Hallo tmili,

> ja nach den rechnungen ist mir das auch ersichtlich :)
>  aber verwirrend finde ich immer noch warum ich in einen
> eigenwert bei dem durch nullsetzen die bedingung rauskam
> dass [mm]\alpha>\wurzel{7}[/mm] sein muss, das gegenteilige
> einsetzen muss.
>  meine letzte frage für heute abend - dann hast du deine
> ruhe ;) - ist jetzt noch warum du den betrag von [mm]\alpha[/mm]
> nimmst für die lösung..also [mm]|\alpha|>\wurzel{7}[/mm] und nicht
> nur [mm]\alpha>\wurzel{7}?[/mm]


Die Bedingung lautet doch zunächst so: [mm]\alpha^{2} < 7[/mm]

Zieht man hier die Wurzel, und beachtet, daß die Wurzel aus
einer positvien reellen Zahl per Definition stets positiv ist,
so ergibt sich:

[mm]\wurzel{\alpha^{2}}=\vmat{\alpha}[/mm]


>  wünsche dir noch einen schönen abend und vielen lieben


Danke, gleichfalls.


> dank für deine hilfe!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]