www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Skalarprodukt von Vektoren
Skalarprodukt von Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt von Vektoren: Frage
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 05.09.2005
Autor: Pompeius

hi leute!

wir sind in der schule mit dem thema vektorrechnung angefangen und ich komm bei einer aufgabe nicht weiter... und zwar:


gegeben sind zwei vektoren    [mm] \vec{a} [/mm] =  [mm] \vektor{2 \\ 3 \\ 1} [/mm]   und    [mm] \vec{b} [/mm] =  [mm] \vektor{-2 \\ 1 \\ -3}. [/mm]

die aufgabe:  Bestimmen sie zwei reelle zahlen u und v so, dass   [mm] \vec{v} [/mm] =  [mm] \vektor{u \\ 3 \\ v} [/mm]  senkrecht auf   [mm] \vec{a} [/mm]  und   [mm] \vec{b} [/mm]  steht!


also erstmal weiß ich ja das cosinus 0 sein muss...

Das Skalareprodukt von   [mm] \vec{a} [/mm]  und   [mm] \vec{v} [/mm]  ist :  2u+9+v


ich hab versucht:    cos90 =   [mm] \bruch{2u+9+v}{ \wurzel[2]{14*(u^2+9+v^2)} } [/mm]  =  0

aber das geht ja nicht, weil ich da zwei unbekannte drin hab...

oder könnte ich vielleicht v ignorieren, weil der winkel in der ebene und im raum gleich groß ist!?? keine ahnung...

vielen dank schon mal für die hilfe


        
Bezug
Skalarprodukt von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Mo 05.09.2005
Autor: Julius

Hallo!

Der Ansatz ist richtig. [daumenhoch]

Den Nenner allerdings kannst du ja ignorieren, da -unter der Voraussetzung, dass der Nenner nicht $0$ ist- ein Bruch genau dann $0$ ist, wenn der Zähler es ist.

Anders ausgedrückt und klarer:

Zwei Vektoren [mm] $\pmat{a_1 \\ a_2 \\ a_3}$ [/mm] und [mm] $\pmat{b_1 \\ b_2 \\ b_3}$ [/mm] sind orthogonal (stehen senkrecht aufeinander), wenn für ihr Skalarprodukt gilt:

$0 = [mm] \langle \pmat{a_1 \\ a_2 \\ a_3}, \pmat{b_1 \\ b_2 \\ b_3} \rangle =a_1b_1 [/mm] + [mm] a_2b_2 [/mm] + [mm] a_3b_3$. [/mm]

Du musst also $u$ und $v$ so bestimmen, dass

$0 = [mm] \langle \pmat{2 \\ 3 \\ 1}, \pmat{ u \\ 3 \\ v} \rangle [/mm] = 2u+9+v$

und

$0 = [mm] \langle \pmat{-2 \\ 1 \\ -3}, \pmat{ u \\ 3 \\ v} \rangle [/mm] = -2u+3-3v$.

Dies ist ein lineares Gleichungssystem mit zwei Gleichungen und zwei Unbekannten ($u$ und $v$), das du sicherlich selber lösen kannst. :-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]