www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt positiv definit?
Skalarprodukt positiv definit? < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt positiv definit?: Idee
Status: (Frage) beantwortet Status 
Datum: 12:50 Fr 16.10.2009
Autor: MaRaQ

Ich muss nachweisen, dass eine Funktion ein Skalarprodukt des [mm] \IR^2 [/mm] ist. Bilinearität und Symmetrie waren kein Problem, aber bei der Eigenschaft "positiv semidefinit" scheiter ich leider an einer Stelle.

Ich habe den Vektor [mm]v = (v_1 , v_2) \in \IR^2[/mm] und muss zeigen, dass diese Gleichung für alle [mm]v_1 , v_2[/mm] erfüllt ist:

     [mm]4v_1^2 - 4v_1 v_2 + 3v_2^2 \ge 0[/mm]

Ich bin das mit einer Fallunterscheidung angegangen.
i) [mm]v_1 = v_2 : 4v_1^2 - 4v_1^2 + 3v_1^2 = 3v_1^2 \ge 0[/mm]
ii) [mm]v_1 > v_2 : 4v_1^2 - 4v_1 v_2 + 3v_2^2 > 4v_1^2 - 4v_1^2 + 3v_2^2 = 3v_2^2 \ge 0[/mm]
iii) [mm]v_1 < v_2 : 4v_1^2 - 4v_1 v_2 + 3v_2^2 ... ?[/mm]

Wenn ich beim dritten Fall analog zu ii) abschätze scheitert das leider, weil das zu grob ist.

Hat vielleicht jemand eine Idee?

        
Bezug
Skalarprodukt positiv definit?: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Fr 16.10.2009
Autor: M.Rex

Hallo

Form mal etwas um:

$$ [mm] 4v_{1}^{2}-4v_{1}v_{2}+3v_{2}^{2} [/mm] $$
$$ [mm] =\green{4v_{1}^{2}-4v_{1}v_{2}+v_{2}^{2}}+2v_{2}^{2} [/mm] $$
$$ [mm] \stackrel{\text{bin.Form.}}{=}\green{(2v_{1}-v_{2})^{2}}+2v_{2}^{2} [/mm] $$

Kommst du jetzt weiter?

Marius


Bezug
                
Bezug
Skalarprodukt positiv definit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Fr 16.10.2009
Autor: MaRaQ

Naja, was heißt weiterkommen. Du hast es ja schon für mich gelöst. ;-)

Danke, manchmal bin ich echt blind! :-)

Bezug
                        
Bezug
Skalarprodukt positiv definit?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Fr 16.10.2009
Autor: M.Rex

Hallo

Manchmal sieht man solche Sachen einfach nicht. Aber das war ein Standardtrick bei unseren Übungszetteln, von daher war das bei mir ne "Standardüberlegung"

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]