www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt im Fourierraum..
Skalarprodukt im Fourierraum.. < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt im Fourierraum..: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:08 Mi 20.05.2009
Autor: Darksen

Aufgabe
Durch

[mm] \left\langle f|g \right\rangle [/mm] = [mm] \bruch{1}{\pi}\integral_{-\pi}^{\pi}f(x)g(x)dx [/mm]

wird ein Skalarprodukt definiert.

Bestimmen Sie [mm] $\langle [/mm] 6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x) [mm] \mid [/mm] 10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 [/mm] x) [mm] \rangle [/mm] $.  

Leider habe ich absolut nicht die geringste Ahnung, wie ich das angehen soll...
Beziehungsweise was am Ende dann herauskommen soll/wird...

Kann mir jemand nen Denkanstoß geben?

Danke im Voraus :)

        
Bezug
Skalarprodukt im Fourierraum..: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Mi 20.05.2009
Autor: angela.h.b.


> Durch
>  
> [mm]\left\langle f|g \right\rangle[/mm] =
> [mm]\bruch{1}{\pi}\integral_{-\pi}^{\pi}f(x)g(x)dx[/mm]
>  
> wird ein Skalarprodukt definiert.
>  
> Bestimmen Sie [mm]\langle 6 \sin(10 x)+6 \cos(4 x) \mid 10 \sin(9 x)+10 \cos(10 x) \rangle [/mm].
> Leider habe ich absolut nicht die geringste Ahnung, wie ich
> das angehen soll...
>  Beziehungsweise was am Ende dann herauskommen
> soll/wird...

Hallo,

ja, wat  nu? Scheitert's am Anfang oder am Ende?

Oder anders gefragt: wie weit bist Du denn gekommen?


Zum Anfang:

Du bewegst Dich also im Funktionenraum, und hier wird ein Skalarprodukt von zwei Funktionen wie oben angeben definiert.
Wenn Du Zweifel hast, ob es ein Skalarprodukt ist, so rechne die Bedingungen nach. (Vermutlich habt Ihr das in der Übung aber auch schon getan.)

Und nun hast Du zwei mit Funktionen f(x):=6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x)   und g(x):=10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 [/mm] x) gegeben und den Auftrag, deren Skalarprodukt auszurechnen.

Was mußt Du also tun? Schreib's doch erstmal hin.

Anschließend muß man integrieren. Das ist dann ja ein ganz anderes Thema.

Am Ende herauskommen tut 'ne Zahl. Weil's ja ein Skalarprodukt ist.

Gruß v. Angela



Bezug
        
Bezug
Skalarprodukt im Fourierraum..: Denkanstoss...
Status: (Antwort) fertig Status 
Datum: 17:56 Mi 20.05.2009
Autor: Marcel

Hallo,

> Durch
>  
> [mm]\left\langle f|g \right\rangle[/mm] =
> [mm]\bruch{1}{\pi}\integral_{-\pi}^{\pi}f(x)g(x)dx[/mm]
>  
> wird ein Skalarprodukt definiert.
>  
> Bestimmen Sie [mm]\langle 6 \sin(10 x)+6 \cos(4 x) \mid 10 \sin(9 x)+10 \cos(10 x) \rangle [/mm].
> Leider habe ich absolut nicht die geringste Ahnung, wie ich
> das angehen soll...
>  Beziehungsweise was am Ende dann herauskommen
> soll/wird...
>  
> Kann mir jemand nen Denkanstoß geben?

Denkanstoss: Einsetzen.
Es war [mm] $$\left\langle f|g \right\rangle =\bruch{1}{\pi}\integral_{-\pi}^{\pi}f(x)g(x)dx\,,$$ [/mm]

die Notation
[mm] $$\langle [/mm] 6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x) [mm] \mid [/mm] 10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 [/mm] x) [mm] \rangle$$ [/mm]

bedeutet eigentlich

[mm] $$\langle [/mm] x [mm] \mapsto [/mm] f(x):=6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x) [mm] \mid [/mm] x [mm] \mapsto [/mm] g(x):=10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 [/mm] x) [mm] \rangle\,.$$ [/mm]

Mit anderen Worten:
[mm] $$\langle [/mm] 6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x) [mm] \mid [/mm] 10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 [/mm] x) [mm] \rangle$$ [/mm]
ist nur eine Notationsverkürzende Schreibweise für
[mm] $$\left\langle f|g \right\rangle$$ [/mm]
mit konkreter Funktionsvorschrift $f(x):=6 [mm] \sin(10 [/mm] x)+6 [mm] \cos(4 [/mm] x)$ und $g(x):=10 [mm] \sin(9 [/mm] x)+10 [mm] \cos(10 x)\,.$ [/mm]

Anderes Beispiel:
[mm] $$\langle \blue{x^2} \mid \green{x^3}\rangle=\langle \underbrace{x^2}_{=f(x)} \mid \underbrace{x^3}_{=g(x)}\rangle =\frac{1}{\pi} \int\limits_{-\pi}^\pi \underbrace{\blue{x^2}}_{=f(x)}\underbrace{\green{x^3}}_{=g(x)}\;dx=\frac{1}{\pi} *\frac{1}{6}(\pi^6-(-\pi)^6)=0\,.$$ [/mm]

Was ist also somit
[mm] $$\langle \underbrace{6 \sin(10 x)+6 \cos(4 x)}_{=f(x)} \mid \underbrace{10 \sin(9 x)+10 \cos(10 x)}_{=g(x)} \rangle\,?$$ [/mm]

P.S.:
Beachte bei Deiner Aufgabe die []Orthogonalität der trigon. Funktionen.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]