www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Skalarprodukt
Skalarprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 03.01.2009
Autor: Dinker

Aufgabe
[Dateianhang nicht öffentlich]


AUfgabe a

Hab de Punkt folgende Koordinate gegeben

c (x/- [mm] \bruch{1}{2} [/mm] x + 12)

Dann mit dem Skalarprodukt

[mm] \vektor{5-x \\ 0.5x-10} [/mm] * [mm] \vektor{15-x \\ 0.5x-10} [/mm] = 0

ausrechnen...........

0 = [mm] 1.25x^{2} [/mm] -30x + 1.75

x1 = 14
x2 = 10

Kann mir jemand sagen was ich falsch gemacht habe?

Besten Dank
Gruss Dinker

Aufgabenstellung folgt

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Sa 03.01.2009
Autor: Dinker

Bei Aufgabe b) Warum ist dort die Rede von mehreren Punkten? Aus meiner sicht muss man doch einfach eine Parallele die von der gerade g(x) [mm] 5*\wurzel{5} [/mm] entfernt ist zeichnen?

Gruss Dinker

Bezug
                
Bezug
Skalarprodukt: zwei Parallelen
Status: (Antwort) fertig Status 
Datum: 21:55 Sa 03.01.2009
Autor: Loddar

Hallo Dinker!


Es gibt doch zwei Paralleln zur Geraden $g_$ : halt zu jeder Seite hin.


Gruß
Loddar


Bezug
                        
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:59 Sa 03.01.2009
Autor: Dinker

Sorry, hab gemeint die Punkte müssen innerhalb von [mm] \overline{AB} [/mm] liegen, aber es steht ja auf der Gerade  [mm] \overline{AB} [/mm]

Besten Dank

gruss Dinker

Bezug
        
Bezug
Skalarprodukt: richtige Ergebnisse
Status: (Antwort) fertig Status 
Datum: 21:52 Sa 03.01.2009
Autor: Loddar

Hallo Dinker!


Du musst eintippen, um ein Bild einzufügen: [ img ] 1 [ /img ]
(allerdings ohne Leerzeichen innehalb der eckigen Klammern).


Bis auf einen Tippfehler kann ich keinen Fehler entdecken: alles richtig berechnet! [ok]



> 0 = [mm]1.25x^{2}[/mm] -30x + 1.75

Hier muss es am Ende 175 heißen.


Gruß
Loddar

Bezug
        
Bezug
Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 So 04.01.2009
Autor: Dinker

Zur Aufgabe b

Die Parallele hat die gleiche Steigung, nur verschiebt sich der n -Wert. Da hab ich herausbekommen, dass sich dieser um 12.5 verschiebt, also sind meine beiden Gleichungen

[mm] y_{1} [/mm] = -0.5 - 0.5x
[mm] y_{2} [/mm] = 24 - 0.5x

Gruss Dinker





Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 So 04.01.2009
Autor: Dinker

p1 = -5/2
p2 = 44/2

Bezug
                
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 05.01.2009
Autor: Sigrid

Hallo Dinker,

> Zur Aufgabe b
>  
> Die Parallele hat die gleiche Steigung, nur verschiebt sich
> der n -Wert. Da hab ich herausbekommen, dass sich dieser um
> 12.5 verschiebt, also sind meine beiden Gleichungen
>  
> [mm]y_{1}[/mm] = -0.5 - 0.5x
>  [mm]y_{2}[/mm] = 24 - 0.5x

Kleiner Rechen- oder Schreibfehler. Die 2. Gleichung ist:

$ [mm] y_2 [/mm] = 24,5 - 0,5x $

Gruß
Sigrid

>  
> Gruss Dinker
>  
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]