www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:13 Mi 22.02.2006
Autor: babel

Aufgabe
Zeigen Sie, dass phi(x,y):=x1y1-x1y2-x2y1+4x2y2 auf dem Vektorraum [mm] V=\IR{2} [/mm] ein Skalarprodukt definiert und besimmen sie sowohl die zugehörige Matrix als auch eine Orthonormalbasis.

Hallo zusammen,
kann mir jemand bei dieser Frage helfen?
Ich habe einige Anfänge gemacht, bin mir aber nicht sicher, ob sie richtig sind.
Ist die gesuchte Matrix diese:
1  -1
-1  4

Um die Orthonormalbasis auszurechnen, habe ich diese Formel benutzt:
Puv=B(transponiert)*G*B.

Für B habe ich die obige Matrix benutzt.

Ist dieser Anfang richtig? Wie kann ich ein Skalarprodukt definieren?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mi 22.02.2006
Autor: Bastiane

Hallo nochmal,

also es ist schon mal als Summe von Skalarprodukten ein Skalarprodukt, und die Matrix bekommst Du leicht, indem Du Dir klar machst, dass fuer diese dann

[mm] \phi(x,y) [/mm] = [mm] x^{T}Ay [/mm] gelten muss - dann einfach scharf hinsehen.



Viele Gruesse aus Bonn,

Bastiane
[cap]

Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:13 Do 23.02.2006
Autor: babel

Danke für den Tipp! Hat mir weitergeholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]