www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt
Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:26 Mi 13.11.2024
Autor: Mathemurmel

Aufgabe
Berechnen Sie
[mm] <\vektor{1 \\ 2 \\ 3},\vektor{1 \\ -2 \\ 1}> [/mm] + [mm] <\vektor{-1 \\ 2 \\ -1},\vektor{2 \\ 7 \\ 1}> [/mm]  - [mm] <\vektor{3 \\ -6 \\ 3},\vektor{0 \\ 1 \\ 1}> [/mm] ,

indem Sie nur ein einziges Skalarprodukt ausrechnen.

Als Ergebnis muss herauskommen:  14, ich bekomme aber leider ein anderes Ergebnis heraus und finde meinen Fehler nicht:
= [mm] <\vektor{1 \\ 2 \\ 3},\vektor{1 \\ -2 \\ 1}> [/mm] + [mm] <\vektor{-1 \\ 2 \\ -1},\vektor{2 \\ 7 \\ 1}> [/mm]  + [mm] <(-1)*\vektor{3 \\ -6 \\ 3},\vektor{0 \\ 1 \\ 1}> [/mm]

= [mm] <\vektor{1 \\ 2 \\ 3} [/mm] + [mm] \vektor{-1 \\ 2 \\ -1} [/mm] - [mm] \vektor{3 \\ -6 \\ 3},\vektor{1 \\ -2 \\ 1} [/mm] + [mm] \vektor{2 \\ 7 \\ 1} [/mm] + [mm] \vektor{0 \\ 1 \\ 1}> [/mm]

= [mm] <\vektor{-3 \\ 10 \\ -1},\vektor{3 \\ 6 \\ 3}> [/mm] = -9 + 60 - 3 = 48   statt  14



        
Bezug
Skalarprodukt: Zusammenfassen
Status: (Antwort) fertig Status 
Datum: 15:29 Mi 13.11.2024
Autor: Infinit

Hallo mathemurmel,
ich kann nicht so richtig nachvollziehen, was Du in der vorletzten Zeile gerechnet hast, also habe ich mal von vorne angefangen.
Aus den beiden ersten Skalarproduktion kann man
[mm] \vektor{1 \\ -2 \\ 1} [/mm] rausziehen und dann steht da
[mm] \vektor{1 \\ -2 \\ 1} \cdot \vektor{1 - 2 \\ 2 - 7 \\ 3 -1} [/mm]
Auch das letzte Skalarprodukt lässt sich umschreiben durch
[mm] \vektor{ 3 \\ -6 \\ 3} = 3 \vektor{1 \\ -2 \\ 1} [/mm]
Jetzt kann ich das ganze so zusammenfassen, dass wirklich nur noch ein Skalarprodukt übrig bleibt:
[mm] \vektor{1 \\ -2 \\ 1} \cdot \vektor{ 1 -2 -0 \\ 2 - 7 -3 \\ 3 - 1 - 3} = \vektor{1 \\ -2 \\ 1} \cdot \vektor{-1\\ -8 \\ -1} [/mm] und das gibt wirklich eine 14 als Ergebnis.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]