www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Sitzverteilung
Sitzverteilung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sitzverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:05 So 02.12.2007
Autor: Wimme

Aufgabe
Wie viele Möglichkeiten gibt es, k Personen auf n Stühlen so anzuordnen, dass keine 2 Stühle nebeneinander besetzt sind?
Beweisen Sie Ihre Behauptung.

hi!

Also erst einmal stecke ich schon dabei fest, überhaupt eine Behauptung aufzustellen ;)
Ich habe versucht mir das ganze anhand einer Bitfolge vorzustellen. Sie hat die Länge n, dabei müssen k 1sen(für besetzt) und n-k Nullen auftreten.
Zuerst dachte ich, dann gäb es [mm] 2^{n-k} [/mm] mögliche Platzbelegungen, aber davon habe ich nun Abstand genommen. Ich glaube nun eher, dass es [mm] \vektor{n \\ k} [/mm] mögliche Platzbelegungen gibt. Nun muss ich aber noch die rausfiltern, wo 2 Stühle nebeneinander besetzt sind. Und da hakt es leider.
Ich dachte zuerst, die Anzahl der möglichen nebeneinander sitzenden Leute ist [mm] \vektor{n-1 \\ k-1}. [/mm] (Ich habe einfach sozusagen 2 nebeneinander stehende 1sen zusammengefasst), aber das kann wohl nicht stimmen. Irgendwie glaube ich, dass ich da noch eine Permutation reinbringen muss.

Hoffe ihr könnt mir in diesem Durcheinander helfen - in Kombinatorik bin ich wirklich keine Leuchte scheint mir :(

        
Bezug
Sitzverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:11 Di 04.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]