www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Sinus und Kosinus-Funktionen
Sinus und Kosinus-Funktionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus und Kosinus-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 24.04.2008
Autor: Theoretix

Aufgabe
Erklären Sie folgende Definition in eigenen Worten:
Es sei 0 [mm] \le [/mm] x < [mm] 2\pi. [/mm] Dann vereinbart man:
sin [mm] (x+2\pi\*z)=sinx [/mm]            und
cos [mm] (x+2\pi\*z)=cosx, [/mm] für jedes z [mm] \in [/mm] Z

Hallo zusammen,
Ich habe erhlich gesagt keine Ahnung was ich mit dieser Definition anfangen soll,
geschweige denn sie irgendwie in eigene Worte zu fassen...
könnte mir bitte eben jemand helfen?!
Vllt in dem Zusammenhang auch, was die Sinus und Kosinusfunktionen
mit dem Einheitskreis zu tun haben!?
Danke im Vorraus!
MFG

        
Bezug
Sinus und Kosinus-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:31 Do 24.04.2008
Autor: Bastiane

Hallo Theoretix!

> Erklären Sie folgende Definition in eigenen Worten:
>  Es sei 0 [mm]\le[/mm] x < [mm]2\pi.[/mm] Dann vereinbart man:
>  sin [mm](x+2\pi\*z)=sinx[/mm]            und
>  cos [mm](x+2\pi\*z)=cosx,[/mm] für jedes z [mm]\in[/mm] Z

Hast du dir mal die Sinusfunktion graphisch angeschaut? Am besten, mit einer [mm] \pi-Einteilung [/mm] auf der x-Achse (kannst du z. B. mit Funkyplot zeichnen, findest du glaube ich hier unter Werkzeuge). Und dann such dir mal ein beliebiges x raus, z. B. x=0. Der Funktionswert von 0 ist für den Sinus ebenfalls 0. Nun betrachte z=1, also als nächsten x-Wert [mm] x+2\pi*z=0+2\pi*z=2\pi*1=2\pi. [/mm] Du stellst fest, dass der Funktionswert hier ebenfalls 0 ist. Nun nimmst du z=2 und somit als x-Wert [mm] 4\pi. [/mm] Was stellst du fest? Versuche noch ein paar weitere z-Werte und dann auch noch einen anderen x-Wert und auch dazu unterschiedliche z-Werte. Und für den cos genauso.

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Sinus und Kosinus-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 Fr 25.04.2008
Autor: leduart

Hallo
Man vereinbart also, dass sich die Funktionswerte immer wieder nach einer "Periode" von [mm] 2\pi [/mm] wiederholen sollen.
Wenn man die Funktion auf dem Intervall 0 bis [mm] 2\pi [/mm] kennt, kennt man sie damit überall.
wenn ich den Wert der Funktion ,zBsp bei x=1000 wissen will, ziehe [mm] 2\pi [/mm] so oft ab, bis ich bei einem Wert zwischen 0 und [mm] 2\pi [/mm] bin. dann hab ich da denselben Wert wie bei x=1000.
Graphisch ausgedrückt, wenn man die Funktion um ein Vielfaches von [mm] 2\pi [/mm] nach rechts oder links schiebt, ist der Graph wieder derselbe.

So ähnliche Worte könntest du benutzen. Aber jetzt mach noch eigene Worte draus!!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]