www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Sinus Cosinus
Sinus Cosinus < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sinus Cosinus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:57 Mo 25.01.2010
Autor: Pomtom

Aufgabe
Man zeige für alle x,y [mm] \in \IR [/mm]

sind(x) - sin(y) = 2 cos [mm] (\bruch{x + y}{2}) [/mm] * sin [mm] \bruch{x -y}{2} [/mm]

Ich habe hier einfach keine Ahnung wie ich hier anfangen soll? ich wäre sehr froh wenn ihr mir einen Tipp geben könntet!! Schon mal lieben Dank im vorraus

        
Bezug
Sinus Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 25.01.2010
Autor: ChopSuey

Hallo,

subsituiere hier $\ u = [mm] \frac{x+y}{2} [/mm] $ und $\ v = [mm] \frac{x-y}{2} [/mm] $

Dann ist $\ x = u + v $ und $\ y = u - v $

Dann hilft dir das Additionstheorem $\ [mm] \sin [/mm] ( x + y ) = [mm] \sin [/mm] x [mm] \cos [/mm] y + [mm] \cos [/mm] x [mm] \sin [/mm] y $

Gruß
ChopSuey

Bezug
                
Bezug
Sinus Cosinus: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:21 Mo 25.01.2010
Autor: Pomtom

Danke erstmal für deine Hilfe, aber genau bei dem Additionstheorem ensteht mein Problem ich weiß nicht wie ich das damit beweisen soll ich denke mal das es sich da nur wieder um einen einfachen Trick geht aber auf diesen komme ich einfach nicht.
Lieben Gruß

Bezug
                        
Bezug
Sinus Cosinus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Mo 25.01.2010
Autor: ChopSuey

Hallo,

zeig doch mal, was du so gerechnet hast bzw. was du rechnen möchtest.

Gruß
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]