www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Simultan Triangulierbar
Simultan Triangulierbar < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Simultan Triangulierbar: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 05:51 Do 12.01.2017
Autor: Kakury13

Aufgabe
1.) Seien V ein unitärer Vektorraum mit dim(V)=n ∈ N und f,g ∈ L(V,V) mit f◦g=g◦f. Zeigen Sie, dass f und g simultan unitär triangulierbar sind, d.h. es existiert eine ONB B von V , so dass [f]B,B und [g]B,B obere Dreiecksmatrizen sind.

2.) Zeigen Sie, dass die Bedingung f◦g=g◦f in 1.) hinreichend aber nicht notwendig ist, d.h. finden Sie einen unitären Vektorraum V mit dim(V)∈N und f,g ∈ L(V,V)
mit f◦g≠g◦f, so dass f und g simultan triangulierbar sind.

Die 1. hab ich schon gelöst jetzt hab ich aber ein kleines Problem bei der 2. Ich bin mit der Idee rangegangen, dass über Matrizen zu lösen. Allerdings sind ja im komplexen Vektorraum sind sind alle Matrizen trigonalisierbar.
Kann mir vielleicht jemand helfen ne Idee wäre gut.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Simultan Triangulierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Fr 13.01.2017
Autor: hippias

[willkommenmr]
Deine Idee war schon ganz gut:
Denk' Dir einfach $2$ obere Dreiecksmatrizen aus und definiere $f$ und $g$ als die entsprechenden Endomorphismus bzgl. Deiner Lieblingsbasis. Dann sind $f$ und $g$ in dieser gemeinsamen Basis trianglierbar.

Berechne nun die Produkte und vergleiche. Sollten $f$ und $g$ wider erwarten kommutieren, nimm andere Zahlen und erhöhe eventuell die Dimension.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]