www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Signumfunktion, Betragsfkt.
Signumfunktion, Betragsfkt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Signumfunktion, Betragsfkt.: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:49 So 01.11.2009
Autor: chipbit

Aufgabe
Die Funktion x=sgn x wird durch die Vorschrift

sgn [mm] x=\begin{cases} -1, & \mbox{falls } x<0 \\ 0, & \mbox{falls } x=0 \\ 1, & \mbox{falls } x>0 \end{cases} [/mm]

Zeigen sie das die Formel |x| = x sgnx gilt.

Hallo Leute,
irgendwie finde ich da keinerlei Ansatz für. Gibt es für die Betragsfunktion irgendeine Definition mit der man da anfangen kann? Oder wie muss ich das zeigen? Wäre sehr nett wenn mir jemand da helfen könnte, damit ich zumindest schonmal nen Ansatz habe. Habe schon alles mögliche im Interent durchstöbert, aber nichts wirklich hilfreiches gefunden.

        
Bezug
Signumfunktion, Betragsfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 01.11.2009
Autor: abakus


> Die Funktion x=sgn x wird durch die Vorschrift
>  
> sgn [mm]x=\begin{cases} -1, & \mbox{falls } x<0 \\ 0, & \mbox{falls } x=0 \\ 1, & \mbox{falls } x>0 \end{cases}[/mm]
>  
> Zeigen sie das die Formel |x| = x sgnx gilt.
>  Hallo Leute,
>  irgendwie finde ich da keinerlei Ansatz für. Gibt es für
> die Betragsfunktion irgendeine Definition mit der man da
> anfangen kann?

Ja, und die kennst du seit Klasse 7.
Der Anfang ist: |x|=x, falls x [mm] \ge [/mm] 0.
Den Fall x<0 überlasse ich dir.
Gruß Abakus


> Oder wie muss ich das zeigen? Wäre sehr
> nett wenn mir jemand da helfen könnte, damit ich zumindest
> schonmal nen Ansatz habe. Habe schon alles mögliche im
> Interent durchstöbert, aber nichts wirklich hilfreiches
> gefunden.


Bezug
                
Bezug
Signumfunktion, Betragsfkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 So 01.11.2009
Autor: chipbit

äh, ja peinlich, peinlich....
naja, für x<0 ist |x|=-x ...okay, aber wie zeig ich damit das |x|=x sgnx gilt?
Sorry wenn ich mich da jetzt blöd anstelle, aber ich bin sowas von unmathematisch veranlagt, gerade Beweise liegen mir überhaupt nicht.
Kann ich dann einfach sagen, dass laut Def. für sgn eben |x|=x * 1=x, falls [mm] x\ge0 [/mm] und |x|=x*-1 =-x, falls x<0 ? Find ich jetzt als Beweis nen bisserl merkwürdig.

Bezug
                        
Bezug
Signumfunktion, Betragsfkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 So 01.11.2009
Autor: fencheltee


> äh, ja peinlich, peinlich....
>  naja, für x<0 ist |x|=-x ...okay, aber wie zeig ich damit
> das |x|=x sgnx gilt?
>  Sorry wenn ich mich da jetzt blöd anstelle, aber ich bin
> sowas von unmathematisch veranlagt, gerade Beweise liegen
> mir überhaupt nicht.
> Kann ich dann einfach sagen, dass laut Def. für sgn eben
> |x|=x * 1=x, falls [mm]x\ge0[/mm] und |x|=x*-1 =-x, falls x<0 ? Find
> ich jetzt als Beweis nen bisserl merkwürdig.

1. fall : x=0
|x|=0
sgn(x)=0
|x|=sgn(x)*x
[mm] \gdw [/mm] 0=0 richtig!

2.fall: x>0:
|x|=x
sgn(x)=1
|x|=sgn(x)*x
[mm] \gdw [/mm] x=1*x richtig!

3. fall: x<0:
|x|=-x
sgn(x)=-1
|x|=sgn(x)*x
[mm] \gdw [/mm] -x=-1*x richtig!

mfg tee

Bezug
                                
Bezug
Signumfunktion, Betragsfkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 So 01.11.2009
Autor: chipbit

Vielen Dank! :-)
Gruß
chip

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]