www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Sigma-Algebren
Sigma-Algebren < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Algebren: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 11:45 Mi 09.03.2005
Autor: Bastiane

Hallo ihr! ;-)
Hab hier unter der Definition einer [mm] \sigma [/mm] -Algebra folgende Bemerkung stehen:

Mit [mm] B_n, n\in\IN, [/mm] sind [mm] \bigcap_{n}B_n=C(\bigcup_{n}CB_n) [/mm] ebenso  [mm] \bigcup_{n}\bigcap_{k\ge n}B_k [/mm] messbar.
(mit C meine ich jetzt mal das Komplement - wir hatten da so ein komisches C geschrieben...)

Das erste ist ja noch klar, aber warum steht denn bei dem zweiten unter dem Schnitt [mm] k\ge [/mm] n? Könnte man da nicht auch über alle k gehen? Vielleicht kann mir jemand ein Beispiel geben, an dem ich das erkennen kann, warum das so und nicht anders sein muss?

Viele Grüße
Bastiane
[cap]



        
Bezug
Sigma-Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Mi 09.03.2005
Autor: Stefan

Liebe Christiane!

>  Hab hier unter der Definition einer [mm]\sigma[/mm] -Algebra
> folgende Bemerkung stehen:
>  
> Mit [mm]B_n, n\in\IN,[/mm] sind [mm]\bigcap_{n}B_n=C(\bigcup_{n}CB_n)[/mm]
> ebenso  [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] messbar.
>  (mit C meine ich jetzt mal das Komplement - wir hatten da
> so ein komisches C geschrieben...)

> Das erste ist ja noch klar, aber warum steht denn bei dem
> zweiten unter dem Schnitt [mm]k\ge[/mm] n? Könnte man da nicht auch
> über alle k gehen? Vielleicht kann mir jemand ein Beispiel
> geben, an dem ich das erkennen kann, warum das so und nicht
> anders sein muss?

In [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] liegen genau die Elemente, die in fast allen [mm] $B_n$ [/mm] liegen, also in allen bis auf endlich viele.

Man nennt dies den Limes inferior der Mengenfolge.

Beispiel:

Sei [mm] $B_n=\{x \in \IR^{\infty} \, : \, x_n=0\}$. [/mm]

Dann liegen in [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] alle Folgen, deren Folgenglieder ab einem gewissen Index verschwinden.

Liebe Grüße
Stefan


Bezug
                
Bezug
Sigma-Algebren: noch genauer? :-/
Status: (Frage) beantwortet Status 
Datum: 12:12 Mi 09.03.2005
Autor: Bastiane

Lieber Stefan!
Danke für die schnelle Antwort - aber leider verstehe ich das immer noch nicht so ganz...

> Beispiel:
>  
> Sei [mm]B_n=\{x \in \IR^{\infty} \, : \, x_n=0\}[/mm].
>  
> Dann liegen in [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] alle Folgen,
> deren Folgenglieder ab einem gewissen Index verschwinden.

Fangen wir doch mal an bei k=1:
Dann wäre doch: [mm] B_1=\{x\in\IR^{\infty}\, :\,x_1=0\}, [/mm] also die erste Komponente ist =0
für k=2 wäre es doch: [mm] B_2=\{x\in\IR^{\infty}\, :\,x_2=0\}, [/mm] hier ist die zweite Komponente =0
usw.
Aber wie schneide und vereinige ich das Ganze dann? Ob du mir das auch noch zeigen könntest?

Viele Grüße
Christiane
[cap]


Bezug
                        
Bezug
Sigma-Algebren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mi 09.03.2005
Autor: Stefan

Liebe Christiane!

Ja, klar (auch wenn mir das keine Sternwertung einbringt [motz] ;-)). Ich will doch die 1000... [wein]

> Fangen wir doch mal an bei k=1:
>  Dann wäre doch: [mm]B_1=\{x\in\IR^{\infty}\, :\,x_1=0\},[/mm] also
> die erste Komponente ist =0

[ok]

>  für k=2 wäre es doch: [mm]B_2=\{x\in\IR^{\infty}\, :\,x_2=0\},[/mm]
> hier ist die zweite Komponente =0

[ok]

Dann wäre

[mm] $B_1 \cap B_2 [/mm] = [mm] \{x \in \IR^{\infty} \, : \, x_1=0 \quad \mbox{und} \quad x_2=0\}$. [/mm]

Somit:

[mm] $\bigcup_{n \in \IN} \bigcap_{k \ge n} B_k =\bigcup_{n \in \IN} \{x \in \IR^{\infty} \, : \, x_k=0 \quad \mbox{für alle} \quad k \ge n\}$. [/mm]

Wenn jetzt $x [mm] \in \bigcup_{n \in \IN} \bigcap_{k \ge n} B_k$ [/mm] gilt, dann muss es ja ein $n [mm] \in \IN$ [/mm] geben, so dass $x$ in [mm] $\bigcap_{k \ge n} B_k$ [/mm]  liegt.

Es muss also ein $n [mm] \in \IN$ [/mm] geben, so dass

[mm] $x_k=0$ [/mm] gilt für alle $k [mm] \ge [/mm] n$.

Liebe Grüße
Stefan


Bezug
                                
Bezug
Sigma-Algebren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Mi 09.03.2005
Autor: Bastiane

Lieber Stefan!
Danke nochmal für die Antwort, auch wenn du dafür kein Sternchen bekommst... Aber ich kann ja nachher noch mehr Fragen stellen. ;-)

> Somit:
>  
> [mm]\bigcup_{n \in \IN} \bigcap_{k \ge n} B_k =\bigcup_{n \in \IN} \{x \in \IR^{\infty} \, : \, x_k=0 \quad \mbox{für alle} \quad k \ge n\}[/mm].
>  
>
> Wenn jetzt [mm]x \in \bigcup_{n \in \IN} \bigcap_{k \ge n} B_k[/mm]
> gilt, dann muss es ja ein [mm]n \in \IN[/mm] geben, so dass [mm]x[/mm] in
> [mm]\bigcap_{k \ge n} B_k[/mm]  liegt.
>  
> Es muss also ein [mm]n \in \IN[/mm] geben, so dass
>  
> [mm]x_k=0[/mm] gilt für alle [mm]k \ge n[/mm].

Okay, die einzelnen Schritte konnte ich jetzt nachvollziehen. Jetzt habe ich mich nur gefragt, was das denn mit der [mm] \sigma [/mm] -Algebra zu tun hat. Wenn ich schreiben würde:
[mm] \bigcup_{n}\bigcap_{n}B_n [/mm] würde das Sinn machen? Oder ich glaub, ich meine eher: [mm] \bigcup_{n}\bigcap_{k=1}^{n}B_k [/mm] - gibt's das?
Wenn ja, was hat das denn jetzt damit zu tun, dass [mm] \bigcup_{n}\bigcap_{k\ge n}B_k [/mm] messbar ist und warum nicht [mm] \bigcup_{n}\bigcap_{k=1}^{n}B_k? [/mm]

Sorry, wenn ich das immer noch nicht verstanden habe. Wenn's zu kompliziert werden sollte, dann lass es ruhig, oder ist das soooo wichtig?

Viele Grüße
Christiane
[banane]


Bezug
                                        
Bezug
Sigma-Algebren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Mi 09.03.2005
Autor: Stefan

Liebe Christiane!

>  Danke nochmal für die Antwort, auch wenn du dafür kein
> Sternchen bekommst... Aber ich kann ja nachher noch mehr
> Fragen stellen. ;-)

Brauchst du jetzt nicht mehr. Ich lasse die 1000 von Stefan jetzt erst einmal eine Weile stehen. ;-)
  

> Okay, die einzelnen Schritte konnte ich jetzt
> nachvollziehen. Jetzt habe ich mich nur gefragt, was das
> denn mit der [mm]\sigma[/mm] -Algebra zu tun hat. Wenn ich schreiben
> würde:
>  [mm]\bigcup_{n}\bigcap_{n}B_n[/mm] würde das Sinn machen?

Nein. ;-)

> Oder ich
> glaub, ich meine eher: [mm]\bigcup_{n}\bigcap_{k=1}^{n}B_k[/mm] -
> gibt's das?

Ja, das ist gleich [mm] $B_1$. [/mm] ;-) (denn die Schnittmengen [mm] $B_1 \supset B_1 \cap B_2 \supset B_1 \cap B_2 \cap B_3 \supset \ldots$ [/mm] liegen ja alle ineinander und die Vereinigung ist die größte Teilmenge dieser Mengen, also [mm] $B_1$.) [/mm]

>  Wenn ja, was hat das denn jetzt damit zu tun, dass
> [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] messbar ist und warum nicht
> [mm]\bigcup_{n}\bigcap_{k=1}^{n}B_k? [/mm]

Beides ist messbar, es war nur ein Beispiel. :-)

Liebe Grüße
Stefan


Bezug
                                                
Bezug
Sigma-Algebren: Ok - fertig. :-)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:32 Mi 09.03.2005
Autor: Bastiane

Okay, nun noch eine letzte Mitteilung: :-)

> Brauchst du jetzt nicht mehr. Ich lasse die 1000 von Stefan
> jetzt erst einmal eine Weile stehen. ;-)

Also, ich sehe da immer noch nur 999, aber das ist doch auch eine schöne Zahl! ;-) Läuft dann jetzt bald wieder dein zweites Ich hier rum? *g*

>  >  [mm]\bigcup_{n}\bigcap_{n}B_n[/mm] würde das Sinn machen?
>  
> Nein. ;-)

Dachte ich's mir doch! ;-)
  

> > Oder ich
> > glaub, ich meine eher: [mm]\bigcup_{n}\bigcap_{k=1}^{n}B_k[/mm] -
>
> > gibt's das?
>  
> Ja, das ist gleich [mm]B_1[/mm]. ;-) (denn die Schnittmengen [mm]B_1 \supset B_1 \cap B_2 \supset B_1 \cap B_2 \cap B_3 \supset \ldots[/mm]
> liegen ja alle ineinander und die Vereinigung ist die
> größte Teilmenge dieser Mengen, also [mm]B_1[/mm].)
>  
> >  Wenn ja, was hat das denn jetzt damit zu tun, dass

> > [mm]\bigcup_{n}\bigcap_{k\ge n}B_k[/mm] messbar ist und warum
> nicht
> > [mm]\bigcup_{n}\bigcap_{k=1}^{n}B_k? [/mm]
>  
> Beides ist messbar, es war nur ein Beispiel. :-)

Ah - ja. Gut, kein Wunder, wenn es gleich [mm] B_1 [/mm] ist... Danke, jetzt bin ich beruhigt und konnte endlich mein Fragezeichen, das schon einige Monate in den Unterlagen gestanden haben muss, beantworten. :-)

Viele Grüße
Christiane
[winken] [banane] [breakdance]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]