www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Separation von Variablen
Separation von Variablen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separation von Variablen: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 19:05 Fr 17.09.2010
Autor: julmarie

Aufgabe
Löse die Differentialgleichung.
[mm] y^{´} [/mm] + 1= [mm] e^{y}, [/mm] y(0)= -1

Also ich hab angefangen mit der aufgabe,komme aber nicht weiter:

[mm] y^{´} [/mm] + 1= [mm] e^{y} [/mm]   rechne -1
[mm] y^{´} [/mm]  = [mm] e^{y} [/mm] -1

[mm] \bruch{dy}{dx}= e^{y} [/mm] -1     mal dx und teilen durch [mm] e^{y} [/mm]
[mm] \bruch{dy}{e^{y}} [/mm] = -dx

[mm] \integral \bruch{dy}{e^{y}} [/mm]  = [mm] \integral [/mm]  -dx

und dann hab ich schon schwierigkeiten:

ich bekomme:

?   = - x +c


rauskommen soll zum schluss:

y(x) = [mm] -ln(e^{x+ln(e-1)} [/mm] +1)


        
Bezug
Separation von Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Fr 17.09.2010
Autor: wieschoo


> Löse die Differentialgleichung.
>  [mm]y^{´}[/mm] + 1= [mm]e^{y},[/mm] y(0)= -1
>  Also ich hab angefangen mit der aufgabe,komme aber nicht
> weiter:
>  
> [mm]y^{´}[/mm] + 1= [mm]e^{y}[/mm]   rechne -1
>  [mm]y^{´}[/mm]  = [mm]e^{y}[/mm] -1
>
> [mm]\bruch{dy}{dx}= e^{y}[/mm] -1     mal dx und teilen durch [mm]e^{y}[/mm]

So einfach geht das nicht. Klammer setzen
[mm] $\frac{dy}{dx}=e^y-1$ [/mm]
[mm] $dy=(e^y-1)dx$ [/mm]
[mm] $\int{\frac{dy}{e^y-1}}=\int{dx}$ [/mm]

>  [mm]\bruch{dy}{e^{y}}[/mm] = -dx
>  
> [mm]\integral \bruch{dy}{e^{y}}[/mm]  = [mm]\integral[/mm]  -dx
>  
> und dann hab ich schon schwierigkeiten:
>  
> ich bekomme:
>  
> ?   = - x +c
>  
>
> rauskommen soll zum schluss:
>  
> y(x) = [mm]-ln(e^{x+ln(e-1)}[/mm] +1)
>  


Bezug
                
Bezug
Separation von Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Fr 17.09.2010
Autor: julmarie


> > Löse die Differentialgleichung.
>  >  [mm]y^{´}[/mm] + 1= [mm]e^{y},[/mm] y(0)= -1
>  >  Also ich hab angefangen mit der aufgabe,komme aber
> nicht
> > weiter:
>  >  
> > [mm]y^{´}[/mm] + 1= [mm]e^{y}[/mm]   rechne -1
>  >  [mm]y^{´}[/mm]  = [mm]e^{y}[/mm] -1
> >
> > [mm]\bruch{dy}{dx}= e^{y}[/mm] -1     mal dx und teilen durch [mm]e^{y}[/mm]
>  So einfach geht das nicht. Klammer setzen
>  [mm]\frac{dy}{dx}=e^y-1[/mm]
>  [mm]dy=(e^y-1)dx[/mm]
>  [mm]\int{\frac{dy}{e^y-1}}=\int{dx}[/mm]
>  >  [mm]\bruch{dy}{e^{y}}[/mm] = -dx
>  >  
> > [mm]\integral \bruch{dy}{e^{y}}[/mm]  = [mm]\integral[/mm]  -dx
>  >  
> > und dann hab ich schon schwierigkeiten:
>  >  
> > ich bekomme:
>  >  
> > ?   = - x +c
>  >  
> >
> > rauskommen soll zum schluss:
>  >  
> > y(x) = [mm]-ln(e^{x+ln(e-1)}[/mm] +1)
>  >  
>  


aah ok, alsobekomme ich dann aus

[mm] \integral \bruch{dy}{e^{y}-1} [/mm] = [mm] \integral [/mm] dx

log [mm] (1-e^{y}) [/mm] -y = x

aber leider weiß ich nicht, wie weiter.. es sind ja schon alle y  links udn alle x rechts.. aber wie kann man nun weiter auflösen??

Bezug
                        
Bezug
Separation von Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Fr 17.09.2010
Autor: fred97


> > > Löse die Differentialgleichung.
>  >  >  [mm]y^{´}[/mm] + 1= [mm]e^{y},[/mm] y(0)= -1
>  >  >  Also ich hab angefangen mit der aufgabe,komme aber
> > nicht
> > > weiter:
>  >  >  
> > > [mm]y^{´}[/mm] + 1= [mm]e^{y}[/mm]   rechne -1
>  >  >  [mm]y^{´}[/mm]  = [mm]e^{y}[/mm] -1
> > >
> > > [mm]\bruch{dy}{dx}= e^{y}[/mm] -1     mal dx und teilen durch [mm]e^{y}[/mm]
>  >  So einfach geht das nicht. Klammer setzen
>  >  [mm]\frac{dy}{dx}=e^y-1[/mm]
>  >  [mm]dy=(e^y-1)dx[/mm]
>  >  [mm]\int{\frac{dy}{e^y-1}}=\int{dx}[/mm]
>  >  >  [mm]\bruch{dy}{e^{y}}[/mm] = -dx
>  >  >  
> > > [mm]\integral \bruch{dy}{e^{y}}[/mm]  = [mm]\integral[/mm]  -dx
>  >  >  
> > > und dann hab ich schon schwierigkeiten:
>  >  >  
> > > ich bekomme:
>  >  >  
> > > ?   = - x +c
>  >  >  
> > >
> > > rauskommen soll zum schluss:
>  >  >  
> > > y(x) = [mm]-ln(e^{x+ln(e-1)}[/mm] +1)
>  >  >  
> >  

>
>
> aah ok, alsobekomme ich dann aus
>
> [mm]\integral \bruch{dy}{e^{y}-1}[/mm] = [mm]\integral[/mm] dx
>  
> log [mm](1-e^{y})[/mm] -y = x

Das ist doch keine Stammfunktion von [mm] \bruch{1}{e^{y}-1} [/mm]  !!!


FRED


>  
> aber leider weiß ich nicht, wie weiter.. es sind ja schon
> alle y  links udn alle x rechts.. aber wie kann man nun
> weiter auflösen??


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]