www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Semidefinitheit
Semidefinitheit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Semidefinitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Mo 29.01.2007
Autor: sternschnuppe

Hallo,

ich habe ein Problem mit der Bestimmung der Definitheit von Matrizen.
Bei positiv-definit und negativ-definit habe ich es so verstanden, das man es über die Hauptminoren ausrechnen kann. Ich habe allerdings inzwischen auch gelesen, das man dies bei Semidefinitheit nicht anwenden kann.

Meine Frage wäre jetzt ob es eine kurze möglichst einfach Regel gibt um die Semidefinitheit zu bestimmen.

Vielen Dank für die Hilfe im Voraus
sternschnuppe

        
Bezug
Semidefinitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Di 30.01.2007
Autor: angela.h.b.


> Hallo,
>  
> ich habe ein Problem mit der Bestimmung der Definitheit von
> Matrizen.
>  Bei positiv-definit und negativ-definit habe ich es so
> verstanden, das man es über die Hauptminoren ausrechnen
> kann. Ich habe allerdings inzwischen auch gelesen, das man
> dies bei Semidefinitheit nicht anwenden kann.
>
> Meine Frage wäre jetzt ob es eine kurze möglichst einfach
> Regel gibt um die Semidefinitheit zu bestimmen.

Hallo,

quadratische symmetrische/hermitesche Matrizen sind positiv-semidefinit, wenn alle Eigenwerte [mm] \ge [/mm] 0 sind.

negativ-semidefinit: analog.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]