www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Selbstähnliche Matrizen
Selbstähnliche Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Selbstähnliche Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:47 Mo 08.11.2004
Autor: Micha

Hallo!

Gesucht sind alle Matrizen die nur zu sich selbst ähnlich sind.

Meine Idee ist, dass es alle Diagonalmatrizen sind, weil die auf der Diagonalen nur die Eigenwerte stehen haben. Die Frage ist, ob das nun die einzigen sind, und wie man das explizit beweisen kann?

Triviales Beispiel: Die Einheitsmatrix ist nur zu sich seöbst ähnlich.

Gruß Micha

        
Bezug
Selbstähnliche Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Di 09.11.2004
Autor: Stefan

Lieber Micha!

Du suchst also diejenigen reellen $n [mm] \times [/mm] n$-Matrizen $A$, für die

$A = [mm] CAC^{-1}$ [/mm]

für alle invertierbaren $n [mm] \times [/mm] n$-Matrizen $C$ gilt, also diejenigen $n [mm] \times [/mm] n$-Matrizen $A$, für die

$AC=CA$

für alle invertierbaren $n [mm] \times [/mm] n$-Matrizen $C$ gilt.

Dies sind genau die Matrizen

[mm] $A=\lambda \cdot E_n$ [/mm]

mit einem [mm] $\lambda \in \IR$. [/mm]

Der Beweis geht genauso wie derjenige von

[mm] ${\cal Z}(GL_n(\IR)) [/mm] = [mm] \{\lambda \cdot E_n\, : \, \lambda \in \IR \setminus\{0\}\}$, [/mm]

wobei [mm] ${\cal Z}(G)$ [/mm] das Zentrum einer Gruppe bezeichnet, also die Untergruppe (!), die mit allen Gruppenelementen vertauscht,

den du []hier (Aufgabe 34) findest.

An dem Beweis siehst du auch, dass nicht alle Diagonalmatrizen selbstähnlich sind, sondern nur solche, wo überall auf der Diagonalen das gleiche Element steht.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]