www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Scrabble
Scrabble < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Scrabble: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 21.05.2014
Autor: Mathics

Aufgabe
Aus einem Scrabble-Spiel stehen einem 7 Buchstabensteine zur Verfu ̈gung: ’b’,’c’,’d’,’e’,’f’ und zwei ’a’. Die Anzahl der unterschiedlichen Worte, bestehend aus genau 4 Buchstaben, die man bilden kann, wenn man jeden Buchstabenstein ho ̈chstens einmal verwenden darf, liegt in ...?

Hallo,

ich komme bei dieser Aufgabe leider nicht weiter.


Die Musterlösung lautet:

höchstens 1 ’a’: 6 · 5 · 4 · 3 = 360

2’a’: [mm] \vektor{5 \\ 2} [/mm] 4!/2! = 120

Zusammen:= 480

Vorweg: Ich denke, man geht hier davon aus, dass jeder BuchstabenSTEIN verwenden werden darf, wobei in der Worktkombination die beiden "a" als gleichwertig anzusehen sind.

Beim ersten Schritt hat man vermutlich einfach das doppelte "a" ignoriert, aber was steckt insbesondere hinter dem zweiten Schritt der Rechnung? Ich kann die Lösung leider nicht nachvollziehen.


LG
Mathics


        
Bezug
Scrabble: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Mi 21.05.2014
Autor: Sax

Hi,

Das Wort enthält zwei a's. Da es vier Buchstaben hat, kann man die anderen zwei Buchstaben aus den noch zur Verfügung stehenden fünf Buchstaben wählen, das geht auf [mm] \vektor{5 \\ 2} [/mm] = 10 Arten. Die Anzahl der Worte, die man aus diesen vier Buchstaben legen kann, ist durch die Anzahl der unterschiedlichen Anordnungen von vier Steinen gegeben (5!=24). Dabei sind nun aber all diejenigen Worte zu identifizieren, die sich lediglich durch die unterschiedliche Platzierung der beiden a's unterscheiden, man muss also durch die Anzahl der Möglichkeiten, diese zwei Steine anzuordnen (2!=2)  dividieren.
Allgemein :  Wenn man [mm] n_1 [/mm] Dinge erster Art, [mm] n_2 [/mm] Dinge zweiter Art, ..., [mm] n_k [/mm] Dinge k-ter Art hat, dann lassen sich diese [mm] n=n_1+n_2+...+n_k [/mm] Objekte auf [mm] \bruch{n!}{n_1!*n_2!*...*n_k!} [/mm] Arten anordnen.

Gruß Sax.

Bezug
                
Bezug
Scrabble: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:44 Mi 21.05.2014
Autor: Mathics

Hallo,

ich habe mich jetzt nochmal hingesetzt und mir Gedanken zu der Aufgabe gemacht bzw. versucht den Lösungsweg nachzuvollziehen. Das ist dabei rumgekommen:

In einem ersten Schritt tut er so, als ob es nur 6 Buchstabensteine gibt und für die berechnet er alle möglichen Kombinationen auf 4 Buchstaben mit Berücksichtigung der Reihenfolge.

In einem zweiten Schritt nimmt er die fünf Buchstaben (ohne a) und macht daraus 2er Paare ohne die Reihenfolge zu berücksichtigen. Davon gibts 10 Stück (bc,bd,be,bf,cd,ce,cf,de,df,ef). Damit hat er schon mal 2 Buchstaben, wobei er sagt: den ersten kann ich auf 4 Plätze verteilen, den zweiten auf 3 Plätze, übrig bleiben 2 Plätze für das erste a und ein Platz für das zweite a. Er rechnet also mit 4!. Dadurch erreicht er, dass er trotz der Nichtberücksichtigung der Reihenfolge [mm] (\vektor{5 \\ 2}) [/mm] alle möglichen Plätze mit seinen Buchstaben belegt und diese einfach den 360 dazuaddieren kann. (das ist find ich ein kritischer Punkt an meinen Gedanken, ist er richtig?). Am Ende teilt er durch zwei, weil z.B. b,c,a,a wegen dem a doppelt vorkommt, was nicht sein sollte.


Was sagt ihr dazu?

LG
Mathics

Bezug
                        
Bezug
Scrabble: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Fr 23.05.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]