www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Schwerpunktberechnungen
Schwerpunktberechnungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwerpunktberechnungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:33 Mo 31.05.2004
Autor: nitro1185

berechnund des Schwerpunktes eines Drehkegles mit Hilfe der Integralrechnung: Habe den Drehkegel in kleine Zylinderscheiben mit der Höhe (delta y)eingeteilt. M*ys="Integral" von mi*yi
Berechnung vo  einem m*y=Dichte *r²*Bi*deltay(=Höhe)*y

Man muss r durch y ausdrücken: (R1-R2):(r-R2)=H:(H-y)

R1...große Radius
R2...kleine Radius

Bei weiterem Rechnen komme ich zu keinem genauen Ergebnis.??

        
Bezug
Schwerpunktberechnungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:08 Mo 31.05.2004
Autor: Paulus

Hallo Daniel

erst mal: herzlich willkommen im Matheraum! :-)

ich muss schon sagen, deine Beschreibung muss man xmal lesen, bis man einigermassen nachvollziehen kann, was denn da überhaupt alles gemeint sein könnte. Das mit dem grossen und kleinen Radius habe ich bis jetzt noch nicht verstanden!

Trotzdem versuche ich mal eine kleine Interpretation.

Du schneidest den Kegel also in feine Scheiben, parallel zur Grundfläche und willt dann auf jeder Höhe die Masse dieser Scheibe berechnen. Ja, das ist eine gute Idee! Dabei denke ich aber, darf das spezifische Gewicht mit dem Wert $1$ belegt werden. Die Höhe des Schwerpunktes ist ja sicher unabhängig davon, wie schwer das Kegelmaterial ist, solange es homogen ist.

Ich würde vorschlagen, dass du deinen Kegel auf die Seite legst, so dass die Mitte der Grundfläche bei $(x,y) = (0,0)$ liegt, die Spitze des Kegels bei $(x,y)=(H,0)$ und der Rand der Grundfläche bei [mm] $(x,y)=(0,\pm{R}) [/mm] $

Die obere Mantellinie siehst du dann als Gerade von $(0,R)$ nach $(H,0)$ laufen.

Die Geradengleichung dazu ist wohl [mm] $y=R-\bruch{R}{H}x$ [/mm]

Somit kannst du auch den Radius $r$ als Funktion von $x$ ganz leicht ermitteln.

Und jetzt würde ich einfach mal das Drehmoment berechnen, wenn der Kegel bei $x=0$ aufliegt.  (Durch Integration)

Wenn der Schwerpunkt sich bei der Stelle $x=s$ befindet, so muss dieses Drehmoment gleich sein, wenn du die gesamte Masse beim Punkt $(s,0)$ vereinigst. Also: $s*M$, wobei $M$ einfach mit Hilfe der Formel für das Volumen des Kegels ermittelt werden kann.

So, ich hoffe, mit diesen paar Angaben kommst du ein Wenig weiter. Falls nicht, dann meldest du dich bitte einfach wieder hier im Matheraum. :-)

Und falls ja, dann meldest du dich bitte auch wieder, damit wir wissen, ob du es geschafft hast! :-)

Mit lieben Grüssen

Bezug
                
Bezug
Schwerpunktberechnungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Mo 31.05.2004
Autor: Oliver

Hallo Paulus,

Glückwunsch, Du scheinst die Frage unter Zuhilfenahme einer gewissen Kreativität ja tatsächlich verstanden zu haben - ich hatte das nicht geschafft.

Daher will ich das mal zum Anlass für einen Appell an die Fragesteller zu nehmen: falls ihr ernsthaft Interesse an kompetenter und schneller Hilfe habt, formuliert die Fragen bitte so, dass ein Außenstehender sie ohne großes Rätselraten verstehen kann.

Wenn ihr Euch nämlich nicht einmal bei der Formulierung Mühe gebt, könnt ihr nicht ernsthaft erwarten dass dies dann andere bei der Beantwortung tun.

Sorry, musste jetzt mal raus ...  

Schönen Feiertag noch
Oliver

Bezug
                
Bezug
Schwerpunktberechnungen: Antwort von paulus
Status: (Frage) für Interessierte Status 
Datum: 18:05 Mi 02.06.2004
Autor: nitro1185

Hallo.

Eine gute Idee, jedoch hätte ich dazu noch eine Frage:

Die Funktion r(x) wäre dann: r=R-R/H*x oder?

Der Drehmoment wäre: M=F*r,wobei F=m*g(konstant)

=> M=Integral von 0 bis H von: m*g*Dichte(phi)*(R-R/Hx)²*Bi*H*dx (oder?)

ich weiß nicht ob ich es vergessen habe,jedoch handelt es sich um einen Kegelstumpf.Weiß auch nicht wieso ich mich so blöd anstelle.

Gruß Daniel

Bezug
                        
Bezug
Schwerpunktberechnungen: Antwort von paulus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 Mi 02.06.2004
Autor: nitro1185

Habe das problem gelöst.Weiß jetzt was sie gemeint haben --> habe in der Schule den schwerpunkt immer über die normale Schwerpunktformel hergeleitet: M*ys=Integral von mi*yi; Das mit dem drehmoment habe ich jetzt erfolgreich hergeleitet.Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]