www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Schwarzfahren
Schwarzfahren < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwarzfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:43 Mi 21.11.2007
Autor: mathe-tu-muenchen

Aufgabe
Der Schaffner weiß, dass jeder 10 Fahrgast ohne Ticket unterwegs ist. Er kontrolliert 20 Fahrgäste.

Wie hoch ist die Wahrscheinlichkeit, dass er

1) keinen Schwarzfahrer
2) einen Schwarzfahrer
3) mindestenst 2 Schwarzfahrer

erwischt?

Hallo!

zu 1) P(X=0) = [mm] (\bruch{9}{10})^{20} [/mm] = 0.122

Also die Wahrscheinlichkeit, dass ein Schwarzfahrer ertappt wird p = [mm] \bruch{1}{10}. [/mm] Daraus habe ich dann P(X=0) durch die Formel ausgerechnet.

zu 2) P(X=1) = 20 * [mm] \bruch{1}{10} (\bruch{9}{10})^{19} [/mm] = 0.2701

zu 3) P(X>1) = 1- P(X=0) = 0.878

Kann das so stimmen?

        
Bezug
Schwarzfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:37 Mi 21.11.2007
Autor: M.Rex

Hallo

> Der Schaffner weiß, dass jeder 10 Fahrgast ohne Ticket
> unterwegs ist. Er kontrolliert 20 Fahrgäste.
>  
> Wie hoch ist die Wahrscheinlichkeit, dass er
>
> 1) keinen Schwarzfahrer
>  2) einen Schwarzfahrer
>  3) mindestenst 2 Schwarzfahrer
>
> erwischt?
>  Hallo!
>  
> zu 1) P(X=0) = [mm](\bruch{9}{10})^{20}[/mm] = 0.122
>  
> Also die Wahrscheinlichkeit, dass ein Schwarzfahrer ertappt
> wird p = [mm]\bruch{1}{10}.[/mm] Daraus habe ich dann P(X=0) durch
> die Formel ausgerechnet.

Ist korrekt

>  
> zu 2) P(X=1) = 20 * [mm]\bruch{1}{10} (\bruch{9}{10})^{19}[/mm] =
> 0.2701
>  

Auch korrekt

> zu 3) P(X>1) = 1- P(X=0) = 0.878

Fast: [mm] P(X>1)=1-(P(X=0)+\red{P(X=1)}) [/mm]


Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]