www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Schubfachprinzip
Schubfachprinzip < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schubfachprinzip: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:27 Fr 18.04.2008
Autor: DaSaver

Aufgabe
Ein Sportler trainiert 44 Tage lang, jeden Tag gibt es mindestens eine Trainingseinheit. Insgesamt macht er in diesen 44 Tagen 70 Trainingseinheiten.

Zeige, dass es ein Intervall gibt, in dem der Sportler genau 17 Mal trainiert (also dass es Zahlen [mm]i[/mm] und [mm]j[/mm] gibt derart, dass vom [mm]i[/mm]-ten Tag bis zum [mm]j[/mm]-ten Tag inklusive genau 17 Mal trainiert wird).

Halihallo!

Die Aufgabe ist anscheinend mit Schubfachprinzip zu lösen, ich komme aber nicht drauf. Der Sportler kann die verbleibenden [mm]70-44=26[/mm] frei auf die 44 Tage verteilen. Aber wie komme ich von hier auf die Aufgabenstellung?..:-/

        
Bezug
Schubfachprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Sa 19.04.2008
Autor: felixf

Hallo

> Ein Sportler trainiert 44 Tage lang, jeden Tag gibt es
> mindestens eine Trainingseinheit. Insgesamt macht er in
> diesen 44 Tagen 70 Trainingseinheiten.
>  
> Zeige, dass es ein Intervall gibt, in dem der Sportler
> genau 17 Mal trainiert (also dass es Zahlen [mm][mm]i[/mm][/mm] und [mm][mm]j[/mm][/mm] gibt derart, dass vom [mm][mm]i[/mm]-ten[/mm] Tag bis zum [mm][mm]j[/mm]-ten[/mm] Tag inklusive genau 17 Mal trainiert wird).[/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm] Halihallo![/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm] [/mm][/mm][/mm][/mm]
> [mm][mm][mm][mm]Die Aufgabe ist anscheinend mit Schubfachprinzip zu lösen, ich komme aber nicht drauf. Der Sportler kann die verbleibenden [mm]70-44=26[/mm] frei auf die 44 Tage verteilen. Aber wie komme ich von hier auf die Aufgabenstellung?..:-/ [/mm][/mm][/mm][/mm]

Schau dir doch mal die Folgen [mm] $a_n \in \IN$ [/mm] an, $n [mm] \in \{ 1, 2, \dots, 44 \}$, [/mm] wobei [mm] $a_n$ [/mm] die Anzahl der Trainingseinheiten angibt, die bis einschliesslich dem $n$-ten Tag abgeleistet wurden. Setze [mm] $a_0 [/mm] := 0$. Du weisst [mm] $a_{n+1} [/mm] > [mm] a_n$ [/mm] fuer $n [mm] \in \{ 0, \dots, 43 \}$ [/mm] und [mm] $a_{44} [/mm] = 70$. Du suchst jetzt $n, m [mm] \in \{ 0, \dots, 44 \}$ [/mm] mit [mm] $a_m [/mm] - [mm] a_n [/mm] = 17$.

Um das Schubfachprinzip anzuwenden, musst du dir die Folge [mm] $a_n$ [/mm] wohl modulo 17 anschauen. Dann gibt es auch jeden Fall mehre $n, m$ so, dass [mm] $a_m [/mm] - [mm] a_n$ [/mm] durch 17 teilbar ist. Das ist schonmal ein Anfang, vielleicht kommst du damit weiter :)

LG Felix


Bezug
                
Bezug
Schubfachprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Sa 19.04.2008
Autor: DaSaver


> Schau dir doch mal die Folgen [mm]a_n \in \IN[/mm] an, [mm]n \in \{ 1, 2, \dots, 44 \}[/mm],
> wobei [mm]a_n[/mm] die Anzahl der Trainingseinheiten angibt, die bis
> einschliesslich dem [mm]n[/mm]-ten Tag abgeleistet wurden. Setze [mm]a_0 := 0[/mm].
> Du weisst [mm]a_{n+1} > a_n[/mm] fuer [mm]n \in \{ 0, \dots, 43 \}[/mm] und
> [mm]a_{44} = 70[/mm]. Du suchst jetzt [mm]n, m \in \{ 0, \dots, 44 \}[/mm]
> mit [mm]a_m - a_n = 17[/mm].
>  
> Um das Schubfachprinzip anzuwenden, musst du dir die Folge
> [mm]a_n[/mm] wohl modulo 17 anschauen. Dann gibt es auch jeden Fall
> mehre [mm]n, m[/mm] so, dass [mm]a_m - a_n[/mm] durch 17 teilbar ist. Das ist
> schonmal ein Anfang, vielleicht kommst du damit weiter :)
>  
> LG Felix
>  

Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm] modulo 17. Dann gibt es in jedem "Schubfach" mind. [mm]floor(70/17)=4[/mm] Elemente, richtig? Jetzt nehme ich als "Schubfächer" Zahlen 17,34,51,68 und verteile diese 4*17=68 Elemente auf diese Fächer. Dann gibt es auf jeden Fall mind. 1 Element im 1. Fach. Stimmt es so oder habe ich hier Unfug gerechnet?:)

Bezug
                        
Bezug
Schubfachprinzip: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 11:18 So 20.04.2008
Autor: felixf

Hallo!

> Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> modulo 17. Dann gibt es in jedem "Schubfach" mind.
> [mm]floor(70/17)=4[/mm] Elemente, richtig?

Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es in jedem Fach mindestens ein Element gibt. Und wir wissen das die Summe der Anzahlen von Elementen in allen Faechern 70 ergibt.

> Jetzt nehme ich als
> "Schubfächer" Zahlen 17,34,51,68 und verteile diese 4*17=68
> Elemente auf diese Fächer.

Sorry, ich versteh grad nicht was du meinst.

LG Felix


Bezug
                                
Bezug
Schubfachprinzip: Korrekturmitteilung
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:00 So 20.04.2008
Autor: anstei

Hallo Felix,

> Hallo!
>  
> > Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> > modulo 17. Dann gibt es in jedem "Schubfach" mind.
> > [mm]floor(70/17)=4[/mm] Elemente, richtig?
>  
> Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es
> in jedem Fach mindestens ein Element gibt. Und wir wissen
> das die Summe der Anzahlen von Elementen in allen Faechern
> 70 ergibt.

Nein, das Schubfachprinzip besagt, da 70 > 68 = 4*17, dass es mindestens ein Fach mit mindestens 5 Elementen drin hat. Und daraus lässt sich jetzt einfach ein vollständiger Beweis basteln :)

Viele Grüsse,
Andreas



Bezug
                                
Bezug
Schubfachprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 So 20.04.2008
Autor: felixf

Hallo

> > Ok, als "Schubfächer" nehme ich dann die Reste von [mm](a_n)[/mm]
> > modulo 17. Dann gibt es in jedem "Schubfach" mind.
> > [mm]floor(70/17)=4[/mm] Elemente, richtig?
>  
> Nein, gerade nicht! Das Schubfachprinzip sagt nur, dass es
> in jedem Fach mindestens ein Element gibt. Und wir wissen
> das die Summe der Anzahlen von Elementen in allen Faechern
> 70 ergibt.

Tja, das ist auch falsch: es besagt nur, dass es mind. ein Fach gibt, in dem es > 1 Element gibt. Und wie Andreas gesagt hat, soger noch besser: es sagt, dass es in mind. einem Fach mind. 5 Elemente gibt. (Das kannst du zeigen mit der Annahme, dass es in jedem Fach weniger als 5 Elemente gibt, dann bekommst du schnell einen Widerspruch.)

Danke fuer den Hinweis Andreas :)

LG Felix


Bezug
                                        
Bezug
Schubfachprinzip: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 So 20.04.2008
Autor: DaSaver

Hallo!

ich hab es jetzt hinbekommen mit dem Beweis, danke nochmals für den Tipp!

Viele Grüße,
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]