Schnittwinkel von Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:54 So 29.03.2009 | Autor: | Mandy_90 |
Hallo zusammen^^
Ich hab eine Frage zu der Formel für den Schnittwinkel von Geraden.Die Formel für den Schnittwinkel zweier Geraden lautet ja [mm] cos\alpha=\bruch{|\vec{m_{1}}*\vec{m_{2}}|}{|\vec{m_{1}}|*|\vec{m_{2}}|}.
[/mm]
Wenn ich jetzt zum Beispiel die Vektoren hab: [mm] \vec{m_{1}}=\vektor{-3 \\ 4 \\ 4}, \vec{m_{2}}=\vektor{0 \\ -7 \\ 3}, [/mm] dann ist [mm] cos\alpha=\bruch{16}{\wurzel{41}*\wurzel{58}}=0.3281.Dann [/mm] ist [mm] \alpha=70.85°.
[/mm]
Wenn ich jetzt diese Formel nehme,nur ohen Betragszeichen im Zähler,dann hab ich [mm] cos\alpha=\bruch{-16}{\wurzel{41}*\wurzel{58}}=-0.3281.Dann [/mm] ist der Winkel [mm] \alpha=180°-109.15°=70.85°.
[/mm]
Ich muss hier also zuerst den berechneten Winkel von 180° abziehen und bekomme dann meinen Schnittwinkel.
Gibt es für dieses "Phänomen" eine logische Erklärung?Kann man sich das irgendwie anschaulich kalrmachen?Ich kann mir grad nicht vorstellen,wie diese Betragsstriche bewirken können,dass ich dann schon sofort meinen Schnittwinkel hab.
Vielen Dank
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:00 So 29.03.2009 | Autor: | Kroni |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Hi,
zeichne dir mal zwei Geraden auf einem Blatt auf, die sich schneiden. Nehmen wir weiter an, dass der Schnittwinkel nicht $90^\circ$ sei. Dann hast du einen "kleineren" Schnittwinkel $\alpha<90^\circ$ und einen "größeren" Schnittwinkel $\beta=180^\circ-\alpha$
Der Schnittwinkel ist einfach so definiert, dass man den "kleineren" der beiden Winkel nimmt. Die Betragsstriche sorgen dafür, dass dein Cosinus Winkel zwischen $0$ und $90^\circ$ rausgibt (denn das Ergebnis von $\frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|$ kann nur zwischen 0 und 1 liegen, dementsprechend der Winkel nur zwischen $0$ und $90^\circ$.
Lässt du die Beträge weg, kann es passieren, dass du den "größeren" der beiden Winkel ausrechnest, und du dann den "kleineren" Winkel "manuell" rausfiltern musst.
LG
Kroni
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:24 So 29.03.2009 | Autor: | Mandy_90 |
Vielen Dank schon mal.
> zeichne dir mal zwei Geraden auf einem Blatt auf, die sich
> schneiden. Nehmen wir weiter an, dass der Schnittwinkel
> nicht [mm]90^\circ[/mm] sei. Dann hast du einen "kleineren"
> Schnittwinkel [mm]\alpha<90^\circ[/mm] und einen "größeren"
> Schnittwinkel [mm]\beta=180^\circ-\alpha[/mm]
>
> Der Schnittwinkel ist einfach so definiert, dass man den
> "kleineren" der beiden Winkel nimmt. Die Betragsstriche
> sorgen dafür, dass dein Cosinus Winkel zwischen [mm]0[/mm] und
> [mm]90^\circ[/mm] rausgibt (denn das Ergebnis von
> [mm]\frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|[/mm] kann
> nur zwischen 0 und 1 liegen, dementsprechend der Winkel nur
> zwischen [mm]0[/mm] und [mm]90^\circ[/mm].
Mir ist grad aber nicht so ganz klar,warum das Ergebnis von [mm]\frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|[/mm] nur zwischen 0 und 1 liegen kann?Ich habs an einem Beispiel ausprobiert und da kam etwas zwischen 0 und 1 raus.Aber ich versteh noch nicht,warum das immer so sein muss???
> Lässt du die Beträge weg, kann es passieren, dass du den
> "größeren" der beiden Winkel ausrechnest, und du dann den
> "kleineren" Winkel "manuell" rausfiltern musst.
lg
|
|
|
|
|
Hallo Mandy,
ihr habt ja das Skalarprodukt definiert als
[mm]\vec{a}*\vec{b} = |\vec{a}| * \vec{b}| * cos\alpha[/mm]
Dann gilt einfacherweise:
[mm]0 \le \bruch{|\vec{a}*\vec{b}|}{|\vec{a}|*|\vec{b}|} = \bruch{||\vec{a}|*|\vec{b}|*cos\alpha|}{|\vec{a}|*|\vec{b}|} = |cos\alpha| \le 1[/mm]
MfG,
Gono.
|
|
|
|