www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Schnittpunkt zweier Funktionen
Schnittpunkt zweier Funktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:02 Mo 27.05.2013
Autor: PlanlosLK

Hallo,
Lerne gerade für die morgige Klassenarbeit und bin hier hängen geblieben. (Hoffe habe die richtige Abteilung gefunden!)

f(x)4x²+6x+a
g(x)2x+5

Normalerweise ist das für mich kein Problem. Gleichsetzen und dann Y-Werte. Hier allerdings hat sich a eingeschlichen. Über Geogebra habe ich durch ausprobieren a=6 herausgefunden, doch wie sollte es sont gehen? Mein Ansatz war, a durch X zu ersetzen, welches durch gleichsetzen in einer neuen Formale entsteht:

2x+5=4x²+6x+a
=> a=-x²-x+5/4
Leider kein Erfolg. Kennt sich jemand aus? Danke :)

Nur für Erst-Poster
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittpunkt zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Mo 27.05.2013
Autor: fred97


> Hallo,
>  Lerne gerade für die morgige Klassenarbeit und bin hier
> hängen geblieben. (Hoffe habe die richtige Abteilung
> gefunden!)
>  
> f(x)4x²+6x+a
>  g(x)2x+5

Also [mm] f(x)=4x^2+6x+a [/mm]  und g(x)=2x+5

Du sollst also die Scnittpunkte der Graphen von f und g ermitteln.

Dazu löse die Gleichung

[mm] 4x^2+6x+a [/mm] =2x+5.

Ob und vieviele Lösungen existieren , hängt von a ab.

Auskunft gibt Dir die pq-Formel.

FRED

>  
> Normalerweise ist das für mich kein Problem. Gleichsetzen
> und dann Y-Werte. Hier allerdings hat sich a
> eingeschlichen. Über Geogebra habe ich durch ausprobieren
> a=6 herausgefunden, doch wie sollte es sont gehen? Mein
> Ansatz war, a durch X zu ersetzen, welches durch
> gleichsetzen in einer neuen Formale entsteht:
>  
> 2x+5=4x²+6x+a
>  => a=-x²-x+5/4

>  Leider kein Erfolg. Kennt sich jemand aus? Danke :)
>  
> Nur für Erst-Poster
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  


Bezug
                
Bezug
Schnittpunkt zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 27.05.2013
Autor: PlanlosLK

Das ist das Problem. Wie löse ich die Formel nach a so auf, dass eine reele Zahl entsteht? Danke

Bezug
                        
Bezug
Schnittpunkt zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 27.05.2013
Autor: schachuzipus

Hallo PlanlosLK,


> Das ist das Problem. Wie löse ich die Formel nach a so
> auf, dass eine reele Zahl entsteht? Danke

Von welcher Formel sprichst du?

Du musst doch "nur" schauen, wie die Diskriminante (der Wurzelterm) in Abhängigkeit von [mm]a[/mm] aussieht.

Ist die Diskr. [mm]=0[/mm], so gibt es eine Lösung, ist sie [mm]>0[/mm] zwei Lösungen, ist sie [mm]<0[/mm], so gibt es keine Lösung.

Und die Diskriminante ist linear abh. von a, ein ganz einfacher Ausdruck.

Am besten postest du mal, wie wie weit du mit der p/q-Formel gekommen bist.

Was ist das p, was das q, was steht vor der Wurzel, was unter der Wurzel?

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]