www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Schnittpunkt ausrechnen
Schnittpunkt ausrechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 27.02.2007
Autor: Bit2_Gosu

Hallo !

Die frage ist, in welchem Punkt sich die Gerade g: [mm] \vec{x} [/mm] = [1|-1|1] + r*[3|2|1] mit der Gerade h schneidet.
Letztere geht durch die Punkte A (3/2/2) und B (4/1/2).

Als wenn ich sage h hat die Form [3|2|2] + [mm] s*\overrightarrow{AB} [/mm]

und ich danne beide Geraden gleichsetze kommt bei mir raus:

r = [mm] [\bruch{2}{3}|\bruch{3}{2}|1] [/mm] + [mm] s*[\bruch{1}{3}|\bruch{-1}{2}|0] [/mm]

Aber wie soll ich daraus denn jetzt denn Schnittpunkt ausrechnen ??

Danke !

        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 27.02.2007
Autor: Stefan-auchLotti


> Hallo !

[mm] $\bffamily \text{hi.}$ [/mm]

>  
> Die frage ist, in welchem Punkt sich die Gerade g: [mm]\vec{x}[/mm]
> = [1|-1|1] + r*[3|2|1] mit der Gerade h schneidet.
>  Letztere geht durch die Punkte A (3/2/2) und B (4/1/2).
>  
> Als wenn ich sage h hat die Form [3|2|2] +
> [mm]s*\overrightarrow{AB}[/mm]
>  
> und ich danne beide Geraden gleichsetze kommt bei mir
> raus:
>  
> r = [mm][\bruch{2}{3}|\bruch{3}{2}|1][/mm] +
> [mm]s*[\bruch{1}{3}|\bruch{-1}{2}|0][/mm]
>  
> Aber wie soll ich daraus denn jetzt denn Schnittpunkt
> ausrechnen ??
>  
> Danke !

[mm] $\bffamily \text{Zeig' mal deine genaue Rechnung, hast du durch einen Vektor geteilt?}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Di 27.02.2007
Autor: Bit2_Gosu

Hi !

[1|-1|1] + r*[3|2|1] = [3|2|2] + s*[1|-1|0]

r*[3|2|1] = [2|3|1] + s*[1|-1|0]

r = [mm] [\bruch{2}{3}|\bruch{3}{2}|1] [/mm] + [mm] s*[\bruch{1}{3}|\bruch{-1}{2}|0] [/mm]

Bezug
                        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Di 27.02.2007
Autor: Stefan-auchLotti


> Hi !
>  
> [1|-1|1] + r*[3|2|1] = [3|2|2] + s*[1|-1|0]
>  
> r*[3|2|1] = [2|3|1] + s*[1|-1|0]
>  

[mm] $\bffamily \text{Okay, so weit hätte ich das auch gemacht.}$ [/mm]

> r = [mm][\bruch{2}{3}|\bruch{3}{2}|1][/mm] +
> [mm]s*[\bruch{1}{3}|\bruch{-1}{2}|0][/mm]  

[mm] $\bffamily \text{Ich bin mir zwar nicht sicher und habe auch nicht nachgerechnet, aber ich glaube, dass man nicht einfach durch einen Vektor teilen darf (?)}$ [/mm]

[mm] $\bffamily \text{Du musst das ganze jetzt in ein LGS überführen und dann die prüfen, ob das lösbar ist.}$ [/mm]

[mm] $\bffamily \text{Stefan.}$ [/mm]

Bezug
                                
Bezug
Schnittpunkt ausrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Di 27.02.2007
Autor: Bit2_Gosu

Ja und genau da hab ich keine Ahnung..

Bezug
                                        
Bezug
Schnittpunkt ausrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Di 27.02.2007
Autor: Stefan-auchLotti


> Ja und genau da hab ich keine Ahnung..

[mm] $\bffamily \text{Nehmen wir mal die Form }$ [/mm]

[mm] $$\bffamily r*\vektor{3 \\ 2 \\ 1}=\vektor{2 \\ 3 \\ 1}+s*\vektor{1 \\ -1 \\ 0}$$ [/mm]
[mm] $\bffamily \text{Jetzt ausnutzen, dass ein Skalar und ein Vektor miteinander multipliziert werden, indem man jede Vektorkoordinate mit ihm multipliziert und das ganze in ein LGS.}$ [/mm]

[mm] $$\bffamily \vmat{ 3*r&=&2&+&1*s\\ 2*r&=&3&-&1*s \\ 1*r&=&1&+&0*s}$$ [/mm]
[mm] $\bffamily \text{Überprüfen, ob lösbar (ist lösbar, da du das schon angegeben hast, das die sich schneiden) und dann bei einer Geraden den entsprechenden Skalar einsetzen, fertig.}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]


Bezug
                                                
Bezug
Schnittpunkt ausrechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:49 Di 27.02.2007
Autor: Bit2_Gosu

ach ich Idiot ^^  natürlich... so ging das ;)

Danke :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]