www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgeraden
Schnittgeraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgeraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:01 So 14.09.2008
Autor: dOOm_kiTTy

Hallo, ich habe hier eine Aufgabenstellung, bei der ich einfach nicht weiß, wie ich dort herangehen soll

Gib eine Parameterdarstellung der Schnittgeraden der Ebenen E1 und E2 an

a) E1:   [mm] \left[ \vec{x} - \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} \right] [/mm] *   [mm] \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} [/mm] = 0,
E2:   [mm] \left[ \vec{x} - \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix} \right] [/mm] *   [mm] \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} [/mm] = 0



Kann mir vielleicht jemanden einen Ansatz geben?!
Danke

        
Bezug
Schnittgeraden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 So 14.09.2008
Autor: Somebody


> Hallo, ich habe hier eine Aufgabenstellung, bei der ich
> einfach nicht weiß, wie ich dort herangehen soll
>  
> Gib eine Parameterdarstellung der Schnittgeraden der Ebenen
> E1 und E2 an
> a) E1:   [mm]\left[ \vec{x} - \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix} \right]* \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0[/mm],
> E2:   [mm]\left[ \vec{x} - \begin{pmatrix} 3 \\ 0 \\ 5 \end{pmatrix} \right]* \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} = 0[/mm]
>
>
>  
> Kann mir vielleicht jemanden einen Ansatz geben?!

Den Richtungsvektor der Schnittgeraden könnte man leicht mit Hilfe des Vektorproduktes der beiden Normalenvektoren der Ebenen bestimmen. Aber dann bräuchte man noch einen Punkt der Schnittgeraden. Also muss man doch das Gleichungssystem lösen, das sich ergibt, wenn man den Vektor [mm] $\vec{x}$ [/mm] in Koordinaten $x,y,z$ ausdrückt und die Skalarprodukte ausmultipliziert:

[mm]\begin{array}{crcrcrcrcl|} \text{(I)} & x &+& y &+& z &-& 5 &=& 0\\ \text{(II)} & 2x &-& 3y &+& z &-& 11 &=& 0\\\cline{2-10} \end{array}[/mm]

Nun bestimmst Du die allgemeine Lösung dieses (unterbestimmten) linearen Gleichungssystems, etwa in dem Du Gleichung (I) von Gleichung (II) subtrahierst. Ergibt $x-4y-6=0$. Dann drückst Du die eine der verbleibenden beiden Variablen einfach als Funktion der anderen aus (d.h. Du behandelst diese Variable als frei wählbaren Parameter der allgemeinen Lösung). Etwa $x=4y+6$. Einsetzen dieses Wertes von $x$ in die Gleichung (I) ergibt, dass $z=-5y-1$ sein muss. Damit hast Du, dass für einen Punkt $(x|y|z)$ der Schnittgeraden gelten muss:

[mm]\pmat{x\\y\\z}=\pmat{4y+6\\y\\-5y-1}=\pmat{6\\0\\-1}+\red{y}\pmat{4\\1\\-5}[/mm]

Nun wirst Du in der Linearkombination ganz rechts noch [mm] $\red{y}$ [/mm] in $t$ umbenennen wollen und schon hast Du die Parameterdarstellung der Schnittgeraden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]