www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Schnittgerade von E1 und E2
Schnittgerade von E1 und E2 < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 14:32 Mo 17.01.2005
Autor: Maiko

Hallo!
Ich habe mal eine Frage.

z.B.:
Ich habe die Aufgabe, die Schnittgerade zweier Ebenen
3x-5y-4z=11
3x-3y+z=5
zu bestimmen.

Zuerst nehme ich das Kreuzprodukt der Normalvektoren und habe somit den Richtungsvektor der Gerade:
=(-17;-15;6)

Jetzt muss ich noch den Anfangspunkt der Gerade bestimmen.
Ich habe hier 2 Gleichungen und 3 Unbekannte.
Woher weiß ich, ob ich nun die x-,y-, oder z-Koordinate =0 setzen muss, um zum Ergebnis zu gelangen?

        
Bezug
Schnittgerade von E1 und E2: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 17.01.2005
Autor: Christian

Hallo.

Wenn Du doch den Richtungsvektor schon hast, tuts doch jeder beliebige Punkt der Geraden. Setzt Du z.B. z=0, so erhältst Du y=-3 und x=-4/3.
Damit bist Du dann eigentlich schon fertig.

Gruß,
Christian

Bezug
                
Bezug
Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 09:46 Di 18.01.2005
Autor: Maiko

Ich habe noch bissel Probleme, mir das bildlich vorzustellen.

Wenn ich den Richtungsvektor des Schnittes der Ebenen habe, dann kann ich doch nicht jeden beliebigen Punkt als Stützvektor der Geraden verwenden?!

Kann ich auch die x-,y- Koordinate =0 setzen? Oder warum wurde hier z = 0 gesetzt?

Wie muss ich mir das vorstellen, wenn ich eine Koordinate des Normalvektors der Ebenen 0 setze? Warum komm ich dann auf das Ergebnis?

Kann mir das nochmal bitte jmd. anschaulich erklären?

Bezug
                        
Bezug
Schnittgerade von E1 und E2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Di 18.01.2005
Autor: Christian

Hallo nochmal.

Also nochmal langsam.
Du hast den Richtungsvektor deiner Geraden bereits gegeben. Um die Gerade eindeutig anzugeben, brauchst Du nur noch einen beliebigen Punkt der Geraden zu wissen. Das ist dir soweit schon klar, oder?

Wenn Du jetzt ein Gleichungssystem ansetzt für den Schnitt der beiden Ebenen, dann sind die x,y,z die das Gleichungssystem lösen, eben die Punkte deiner Geraden. Weil die Gerade aber eben nur von einem Parameter abhängt, kannst Du um einen beliebigen Punkt deiner Geraden zu erhalten, für x,y,z im Prinzip einen beliebigen Wert einsetzen und nach den anderen beiden auflösen.

Ich hoffe, das ist jetzt einigermaßen klar geworden.

Gruß,
Christian

Bezug
                                
Bezug
Schnittgerade von E1 und E2: Frage
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 18.01.2005
Autor: Maiko

Hmm...
Vom Lösungsprinzip her habe ich das schon verstanden, wollt mir das aber eigentlich auch bildlich vorstellen können.

Scheint nicht ganz einfach zu sein...

Bezug
                                        
Bezug
Schnittgerade von E1 und E2: bildliche Vorstellung
Status: (Antwort) fertig Status 
Datum: 12:29 Fr 21.01.2005
Autor: sawatzky

Hallo Maiko,

Als erstes: Doch es ist ganz einfach.

Die beiden Gleichungen für die Ebenen bestimmen genau eine Raumgerade.

Wenn Du jetzt den Richtungsvektor der Geraden hast, brauchst Du ja nur noch einen beliebigen Punkt der Geraden, um die Gerade genau zu bestimmen.

Jede der unendlich vielen Lösungen, die beide Ebenen-Gleichungen erfüllen, bestimmen einen Punkt der Schnitt-Geraden. (So eine Schnitt-Gerade ist ja genau die Menge aller Punkte die zu beiden Ebenen gehören)

Daher kannst Du in die Ebenen-Gleichungen jeweils denselben beliebigen Wert für eine der Unbekannten einsetzen und die anderen beiden Unbekannten darüber bestimmen. Dadurch erhälst Du dann einen Punkt der zu beiden Ebenen gehört also  zur Schnitt-Geraden und den kannst Du dann als Stützpunkt benutzen.

Ich hoffe das hilft

gruß
Astrid



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]