www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgerade mit Grundebene
Schnittgerade mit Grundebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade mit Grundebene: geg. Aufpunkt, ges. Vektor
Status: (Frage) beantwortet Status 
Datum: 18:27 Mi 29.09.2010
Autor: MtheRulz

Aufgabe
s1 sei die Schnittgerade der Ebene
F: -2,08x-(9,405+0,16p)y-58,5z=-190,125-2,08p mit der x-y-Ebene und
s2 sei die Schnittgerade der Ebene
G: -2,08x+(10,845-0,16p)y+58,5z=190,125-2,08p mit der x-y-Ebene.

Bestimmen Sie eine Gleichung von s1 und s2, wählen Sie als Aufpunkt den Schnittpunkt!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

So,

als Aufpunkt (Aufgabe davor) habe ich S(6,5-(4/9)p|(169/9)|0) herausbekommen und ich bin mir 100%ig sicher, dass das stimmt! Aber wie ergeben sich nun die Vektoren der Schnittgeraden, wenn ich den Aufpunkt bereits habe?

Danke für die Antworten!

        
Bezug
Schnittgerade mit Grundebene: da fehlt doch was
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 29.09.2010
Autor: Loddar

Hallo MtheRulz!


> s1 sei die Schnittgerade der Ebene
> F: -2,08x-(9,405+0,16p)y-58,5z=-190,125-2,08p

Die Schnittgerade der Ebene F mit ... ?

So ist die Aufgabenstellung sinnlos.


Bitte poste die vollständige Aufgabenstellung!


Gruß
Loddar




Bezug
                
Bezug
Schnittgerade mit Grundebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:33 Mi 29.09.2010
Autor: MtheRulz

Jop, danke, ist mir dann auch aufgefallen und wurde schon geändert =)

Bezug
        
Bezug
Schnittgerade mit Grundebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Mi 29.09.2010
Autor: MathePower

Hallo MtheRulz ,

> s1 sei die Schnittgerade der Ebene
> F: -2,08x-(9,405+0,16p)y-58,5z=-190,125-2,08p mit der
> x-y-Ebene und
>  s2 sei die Schnittgerade der Ebene
> G: -2,08x+(10,845-0,16p)y+58,5z=190,125-2,08p mit der
> x-y-Ebene.
>  
> Bestimmen Sie eine Gleichung von s1 und s2, wählen Sie als
> Aufpunkt den Schnittpunkt!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> So,
>  
> als Aufpunkt (Aufgabe davor) habe ich
> S(6,5-(4/9)p|(169/9)|0) herausbekommen und ich bin mir


Stimmt [ok]


> 100%ig sicher, dass das stimmt! Aber wie ergeben sich nun
> die Vektoren der Schnittgeraden, wenn ich den Aufpunkt
> bereits habe?


Löse doch einfach die Ebenengleichung F bzw. G unter z=0
nach einer Variablen (x oder y) auf.

Dann bekommst eine Lösung, bei der x von y bzw. y von x abhängt.
Bastle dann daraus die Schnittgeraden s1 und s2.


>  
> Danke für die Antworten!


Gruss
MathePower

Bezug
                
Bezug
Schnittgerade mit Grundebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Mi 29.09.2010
Autor: MtheRulz

Okay, also wenn ich jetzt für F nach x auflöse, bekomme ich:

x=(2925/32)+p-((1881/416)+(1/13)p)y

Würde ich das nun in die Gleichungen wieder einsetzen, hätte ich ja so etwas wie 0=0 raus... daher hasse ich diese Form, weil ich einfach nicht weiter komme...

Wenn ich aber die Ebene in Parameterform hätte, also:

(p|0|(3/14))+ /lambda (-p|13|(-209/100)) + /mu ((4,5-p)|13|-(9/4)) und dann umstelle für /mu = ((2/21)-(209/225) /lambda) und das einsetze, dann kommt da wascraus, was falsch ist.... arghhh

Bezug
                        
Bezug
Schnittgerade mit Grundebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mi 29.09.2010
Autor: MathePower

Hallo MtheRulz,

> Okay, also wenn ich jetzt für F nach x auflöse, bekomme
> ich:
>  
> x=(2925/32)+p-((1881/416)+(1/13)p)y


Setze jetzt y=s, dann ergibt sich:

[mm]x=(2925/32)+p-((1881/416)+(1/13)p)s[/mm]

[mm]y=s[/mm]

[mm]z=0[/mm]

Somit die Gerade:

[mm]\pmat{x \\ y \\ z}=\pmat{(2925/32)+p \\ 0 \\ 0} + s*\pmat{-((1881/416)+(1/13)p) \\ 1 \\ 0}[/mm]


>  
> Würde ich das nun in die Gleichungen wieder einsetzen,
> hätte ich ja so etwas wie 0=0 raus... daher hasse ich
> diese Form, weil ich einfach nicht weiter komme...


Nun,  Du sollst zunächst die Schnittgeraden s1 und s2 bilden.


>  
> Wenn ich aber die Ebene in Parameterform hätte, also:
>  
> (p|0|(3/14))+ /lambda (-p|13|(-209/100)) + /mu
> ((4,5-p)|13|-(9/4)) und dann umstelle für /mu =
> ((2/21)-(209/225) /lambda) und das einsetze, dann kommt da
> wascraus, was falsch ist.... arghhh


Gruss
MathePower

Bezug
                                
Bezug
Schnittgerade mit Grundebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:45 Mi 29.09.2010
Autor: MtheRulz

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ah, okay, das ist das erste Mal, dass ich das System mit dem x-, y-, z-Einsetzen verstanden habe, danke!

Für die beiden Geraden mit dem berechneten Aufpunkt ergibt sich jetzt also:

$ \pmat{x \\ y \\ z}=\pmat{6,5-(4/9)p \\ (169/9) \\ 0} + s\cdot{}\pmat{-((1881/416)+(1/13)p) \\ 1 \\ 0} $

und

$ \pmat{x \\ y \\ z}=\pmat{6,5-(4/9)p \\ (169/9) \\ 0} + s\cdot{ \pmat{((2169/416)+(1/13)p) \\ 1 \\ 0} $ .

Stimmt's oder hab ich Recht? Vielen Dank schon einmal für alles! Super Hilfe!


Bezug
                                        
Bezug
Schnittgerade mit Grundebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 29.09.2010
Autor: MathePower

Hallo MtheRulz,

> Ah, okay, das ist das erste Mal, dass ich das System mit
> dem x-, y-, z-Einsetzen verstanden habe, danke!
>  
> Für die beiden Geraden mit dem berechneten Aufpunkt ergibt
> sich jetzt also:
>  
> [mm]\pmat{x \\ y \\ z}=\pmat{6,5-(4/9)p \\ (169/9) \\ 0} + s\cdot{}\pmat{-((1881/416)+(1/13)p) \\ 1 \\ 0}[/mm]
>  
> und
>  
> [mm]\pmat{x \\ y \\ z}=\pmat{6,5-(4/9)p \\ (169/9) \\ 0} + s\cdot{ \pmat{((2169/416)+(1/13)p) \\ 1 \\ 0}[/mm]
> .
>  
> Stimmt's oder hab ich Recht? Vielen Dank schon einmal für
> alles! Super Hilfe!
>  


Das stimmt und Du hast Recht. [ok]


Gruss
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]