www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgerade
Schnittgerade < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Sa 16.05.2009
Autor: Mandy_90

Aufgabe
Gegeben sind die Ebenen [mm] E_{1}:x+2y+z=4, E_{2}:x=2 [/mm] und [mm] E_{3}:x-y+z=1. [/mm]
Gibt es eine Gerade die auf allen drei Ebenen liegt?

Hallo zusammen^^

Ich bin bei dieser Aufgabe nicht sicher ob ich die richtige Lösungsidee habe.
Kann ich hier einfach die Shcnittgerade von zwei Ebenen berechnen und überprüfen ob diese auch auf der dritten liegt?Das mache ich natürlich mit allen drei Ebenen und wenn dies der Fall ist dann gibt es eine Gerade die auf allen drei Ebenen liegt.
Kann man das so machen oder geht das anders???


Vielen Dank

lg

        
Bezug
Schnittgerade: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Sa 16.05.2009
Autor: glie


> Gegeben sind die Ebenen [mm]E_{1}:x+2y+z=4, E_{2}:x=2[/mm] und
> [mm]E_{3}:x-y+z=1.[/mm]
>  Gibt es eine Gerade die auf allen drei Ebenen liegt?
>  Hallo zusammen^^
>  
> Ich bin bei dieser Aufgabe nicht sicher ob ich die richtige
> Lösungsidee habe.
>  Kann ich hier einfach die Shcnittgerade von zwei Ebenen
> berechnen und überprüfen ob diese auch auf der dritten
> liegt?Das mache ich natürlich mit allen drei Ebenen und
> wenn dies der Fall ist dann gibt es eine Gerade die auf
> allen drei Ebenen liegt.
>  Kann man das so machen oder geht das anders???
>  
>
> Vielen Dank
>  
> lg

Hallo Mandy,
deine Idee ist schon sehr gut.
Es genügt schon, die Schnittgerade der Ebenen [mm] E_1 [/mm] und [mm] E_2 [/mm] zu bestimmen und dann zu überprüfen, ob die Ebene [mm] E_3 [/mm] diese Gerade enthält.

Gruß Glie



Bezug
                
Bezug
Schnittgerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Sa 16.05.2009
Autor: Mandy_90

ok Vielen Dank =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]