www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Schnittfläche zweier Funktione
Schnittfläche zweier Funktione < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittfläche zweier Funktione: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:06 So 27.01.2013
Autor: Dome1994

Aufgabe
Berechnen Sie den Inhalt des Flächenstückes in der xy-Ebene, das von den Kurven
y [mm] =x^{4}-4 [/mm] und y [mm] =-3x^2 [/mm]
begrenzt wird.

Hi Leute,
ich muss diese Aufgabe im Rahmen eines Übungsblattes lösen und wollte einfach fragen ob ihr schauen könnt ob meine Lösung korrekt ist. Falls nicht bin ich offen für Verbesserungsvorschläge :)

[mm] x^{4}-4=-3x^{2} [/mm]

[mm] x^{4}+3x^{2}-4=0 [/mm]

Substitution: setze [mm] x^{2}=u [/mm]
--> [mm] u^{2}+3u-4=0 [/mm]

durch Mitternachtsformel folgt:
[mm] u_{1}=-1 [/mm]  ;  [mm] u_{2}=-4 [/mm]

Rücksubstitution:
[mm] x_{1}=\wurzel{-1} [/mm]  ;  [mm] x_{2}=\wurzel{-4} [/mm]

[mm] \Rightarrow [/mm] kein Schnittpunkt
[mm] \Rightarrow [/mm] keine begrenzte Fläche

Vielen Dank für jede Antwort! :)

LG Dome

        
Bezug
Schnittfläche zweier Funktione: Antwort
Status: (Antwort) fertig Status 
Datum: 16:11 So 27.01.2013
Autor: MathePower

Hallo Dome1994,

> Berechnen Sie den Inhalt des Flächenstückes in der
> xy-Ebene, das von den Kurven
>  y [mm]=x^{4}-4[/mm] und y [mm]=-3x^2[/mm]
>  begrenzt wird.
>  Hi Leute,
>  ich muss diese Aufgabe im Rahmen eines Übungsblattes
> lösen und wollte einfach fragen ob ihr schauen könnt ob
> meine Lösung korrekt ist. Falls nicht bin ich offen für
> Verbesserungsvorschläge :)
>  
> [mm]x^{4}-4=-3x^{2}[/mm]
>  
> [mm]x^{4}+3x^{2}-4=0[/mm]
>  
> Substitution: setze [mm]x^{2}=u[/mm]
>  --> [mm]u^{2}+3u-4=0[/mm]

>  
> durch Mitternachtsformel folgt:
> [mm]u_{1}=-1[/mm]  ;  [mm]u_{2}=-4[/mm]
>  


Das muss hier so lauten:

[mm]u_{1}=\blue{+}1, \ u_{2}=-4[/mm]


> Rücksubstitution:
>  [mm]x_{1}=\wurzel{-1}[/mm]  ;  [mm]x_{2}=\wurzel{-4}[/mm]
>  
> [mm]\Rightarrow[/mm] kein Schnittpunkt
>  [mm]\Rightarrow[/mm] keine begrenzte Fläche
>  
> Vielen Dank für jede Antwort! :)
>  
> LG Dome


Gruss
MathePower

Bezug
                
Bezug
Schnittfläche zweier Funktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:14 So 27.01.2013
Autor: Dome1994

Okay vielen Dank!

Dann hab ich aber trotzdem nur eine Grenze und kann die Fläche zwischen den Funktionen nicht berechnen oder?

LG
Dome


Bezug
                        
Bezug
Schnittfläche zweier Funktione: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 So 27.01.2013
Autor: MathePower

Hallo Dome1994,

> Okay vielen Dank!
>
> Dann hab ich aber trotzdem nur eine Grenze und kann die
> Fläche zwischen den Funktionen nicht berechnen oder?
>  


Du hast doch substituiert: [mm]u=x^{2}[/mm]

Aus der Rücksubstitution ergeben sich damit
für die einzige positive Lösung zwei Schnittpunkte.
Dadurch kannst Du die Fläche zwischen den Funktionen berechnen.


> LG
> Dome

>


Gruss
MathePower  

Bezug
                                
Bezug
Schnittfläche zweier Funktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 So 27.01.2013
Autor: Dome1994

Hi,
>
> Du hast doch substituiert: [mm]u=x^{2}[/mm]
>  
> Aus der Rücksubstitution ergeben sich damit
> für die einzige positive Lösung zwei Schnittpunkte.
>  Dadurch kannst Du die Fläche zwischen den Funktionen
> berechnen.
>  

Bekomm ich dann nicht [mm] 1=x^2 [/mm] also  [mm] x=\wurzel{1}? [/mm]
Des was unter der Wurzel steht muss ja immer positiv sein, also hab ich doch nur eine Lösung oder?

LG
Dome

Bezug
                                        
Bezug
Schnittfläche zweier Funktione: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 So 27.01.2013
Autor: MathePower

Hallo  Dome1994,

> Hi,
> >
> > Du hast doch substituiert: [mm]u=x^{2}[/mm]
>  >  
> > Aus der Rücksubstitution ergeben sich damit
> > für die einzige positive Lösung zwei Schnittpunkte.
>  >  Dadurch kannst Du die Fläche zwischen den Funktionen
> > berechnen.
>  >  
> Bekomm ich dann nicht [mm]1=x^2[/mm] also  [mm]x=\wurzel{1}?[/mm]
>  Des was unter der Wurzel steht muss ja immer positiv sein,
> also hab ich doch nur eine Lösung oder?
>  


Die Wurzel aus einer positiven reellen Zahl ist per Definition
wieder eine positive reelle Zahl. Das ist richtig.

Die Gleichung [mm]1=x^{2}[/mm] hat aber zwei Lösungen.
denn [mm]1=\left(-1\right)^{2}=\left(1\right)^{2}[/mm]


> LG
> Dome


Gruss
MathePower

Bezug
                                                
Bezug
Schnittfläche zweier Funktione: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 So 27.01.2013
Autor: Dome1994

Also hab ich dann:

[mm] \integral_{-1}^{1}{x^{4}-4 dx}-\integral_{-1}^{1}{-3x^{2} dx}=\bruch{28}{5} [/mm]
??

LG Dome

Bezug
                                                        
Bezug
Schnittfläche zweier Funktione: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 So 27.01.2013
Autor: MathePower

Hallo Dome1994,


> Also hab ich dann:
>  
> [mm]\integral_{-1}^{1}{x^{4}-4 dx}-\integral_{-1}^{1}{-3x^{2} dx}=\bruch{28}{5}[/mm]
>  


Da muss stehen: [mm]\blue{-}\bruch{28}{5}[/mm],
da im betrachteten Intervall [mm]x^{4}-4 < -3x^{2}[/mm] ist.


> ??
>  
> LG Dome


Gruss
MathePower

Bezug
                                                                
Bezug
Schnittfläche zweier Funktione: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 So 27.01.2013
Autor: Dome1994

Okay!
Vielen Dank für deine schnelle Hilfe ;)

LG Dome

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]