www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Schnitt und Vereinigung
Schnitt und Vereinigung < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt und Vereinigung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 22:45 Mo 01.11.2010
Autor: Highchiller

Aufgabe
Seien I und J nichtleere Mengen. Fur jedes i [mm] $\in$ [/mm] I sei [mm] $M_i$ [/mm] eine Menge und für jedes j [mm] $\in$ [/mm] J sei [mm] $M_j$ [/mm] eine Menge.
Beweisen Sie die folgende Aussage:
[mm] $\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad [/mm] = [mm] \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)$ [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://forum.mathepedia.de/index.php?topic=10.0

Das Problem liegt darin begraben, dass mir schon der Ansatz für die Hernagehensweise fehlt.
Ich freue mich über jede Hilfe die ich kriegen kann.
Liebe Grüße, André

        
Bezug
Schnitt und Vereinigung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:23 Di 02.11.2010
Autor: angela.h.b.


> Seien I und J nichtleere Mengen. Fur jedes i [mm]\in[/mm] I sei [mm]M_i[/mm]
> eine Menge und für jedes j [mm]\in[/mm] J sei [mm]M_j[/mm] eine Menge.
>  Beweisen Sie die folgende Aussage:
>  [mm]\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad = \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

> Das Problem liegt darin begraben, dass mir schon der Ansatz
> für die Hernagehensweise fehlt.

Hallo,

[willkommenmr].

Wenn der "Ansatz" fehlt, kann das ganz verschiedene Ursachen haben, und es wäre gut, wenn Du mal sagen wurdest, wo das Problem ist.

Prinzipiell ist es so, daß wir rechts und links des Gleichheitszeichens je eine Menge haben, deren Gleichheit zu zeigen ist.
Lt. Definition für die Gleichheit von Mengen ist hierfür zu zeigen, daß jede Menge Teilmenge der anderen ist.

Zu zeigen ist also

a)
[mm]\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad \subseteq \quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

b)
[mm]\quad \bigcup_{(i,j)\in I x J} (M_i \cap M_j)\subseteq\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm]


Wenn Du Dir die Teilmengendefinition anschaust, siehst Du, daß hierfür zu zeigen ist

a)
[mm]\quad x\in\left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) \quad \Rightarrow \quad x\in\bigcup_{(i,j)\in I x J} (M_i \cap M_j)[/mm]

b)
[mm]\quad x\in\bigcup_{(i,j)\in I x J} (M_i \cap M_j)\Rightarrow\quad x\in \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm]


Damit steht der Ansatz.

Nun kann ich mir vorstellen, daß das Problem eher woanders liegt: in den ganzen Zeichen.

Ich mache mir in solchen Fällen immer ein konkretes Beispiel.
Sei [mm] I:=\{1,2\} [/mm] und [mm] J:=\{a,b,c}. [/mm]

Was bedeutet es, wenn dasteht "für jedes [mm] i\in [/mm] I ist [mm] M_i [/mm] eine Menge"?
Es bedeutet: [mm] M_1 [/mm] und [mm] M_2 [/mm] sind Mengen.

Was bedeutet es, wenn dasteht "für jedes [mm] j\in [/mm] J ist [mm] M_j [/mm] eine Menge"?
Es bedeutet: ...

Was ist nun [mm] $\left(\bigcup_{i \in I} M_i\right)$? [/mm]
[mm] $\left(\bigcup_{i \in I} M_i\right)$=$\left(\bigcup_{i \in \{1,2\}} M_i\right)$= [/mm] ???

Entsprechend
[mm] \left(\bigcup_{j \in J} M_i\right)=... [/mm]

Was ist also
[mm] $\quad \left(\bigcup_{i \in I} M_i\right) \quad \cap \quad \left(\bigcup_{j \in J} M_j\right) [/mm] $?

Nun zur rechten Seite.

Was ist [mm] I\times [/mm] J?  Das ist die Menge, die aus allen Paaren besteht, deren erster Eintrag aus I und deren zweiter Eintrag aus J ist.
Welche Paare sind das?
Damit kennst Du [mm] I\times [/mm] J.

Versuche nun mal die rechte Seite konkret hinzuschreiben. Wenn du nicht klarkommst, formuliere genau, an welcher Stelle Dein Problem liegt.

Gruß v. Angela











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]