www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Schmidtsche Orthonormierung
Schmidtsche Orthonormierung < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schmidtsche Orthonormierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Mo 24.01.2011
Autor: thunder90

Aufgabe
Im Vektorraum aller Polynome x(t) = [mm] a_{3} [/mm] t3 + [mm] a_{2} [/mm] t2 + [mm] a_{1} [/mm] t + [mm] a_{0} [/mm]  (t [mm] \in [/mm] [-1; 1]) mit reellen Koeffizienten [mm] a_{k} [/mm] und
dem Skalarprodukt
(x(t),y(t)) := [mm] \integral_{-1}^{1}{x(t)*y(t) dt} [/mm]
wende man das Schmidtsche Orthonormierungsverfahren auf die Basis [mm] b_{1} [/mm] (t) =1,
[mm] b_{2} [/mm] (t) =t,
[mm] b_{3} [/mm] (t) = t2,
[mm] b_{4} [/mm] (t) = t3 an!

Hallo

Ich habe ein Problem mit der Aufgabe! Ich verstehe nur Bahnhof und bekomme kein Ansatz oder Ähnliches hin. Kann mir da einer helfen? Mein Komilitonen meinen das wir das noch garnicht hatten und wir müssen die Aufgabe schon diese Woche abgeben.

Bitte um Hilfe!

mfg

        
Bezug
Schmidtsche Orthonormierung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 24.01.2011
Autor: schachuzipus

Hallo thunder,

> Im Vektorraum aller Polynome x(t) = [mm]a_{3}[/mm] t3 + [mm]a_{2}[/mm] t2 +
> [mm]a_{1}[/mm] t + [mm]a_{0}[/mm] (t [mm]\in[/mm] [-1; 1]) mit reellen Koeffizienten
> [mm]a_{k}[/mm] und

Benutze das Dach ^ links neben der 1, um Exponenten darzustellen:

[mm]x(t)=a_2t^3+a_2t^2+a_1t+a_0[/mm] <-- klick!

> dem Skalarprodukt
> (x(t),y(t)) := [mm]\integral_{-1}^{1}{x(t)*y(t) dt}[/mm]
> wende man
> das Schmidtsche Orthonormierungsverfahren auf die Basis
> [mm]b_{1}[/mm] (t) =1,
> [mm]b_{2}[/mm] (t) =t,
> [mm]b_{3}[/mm] (t) = t2,

[mm]t^2[/mm] !!

> [mm]b_{4}[/mm] (t) = t3

[mm]t^3[/mm] !!

> an!
> Hallo
>
> Ich habe ein Problem mit der Aufgabe! Ich verstehe nur
> Bahnhof und bekomme kein Ansatz oder Ähnliches hin. Kann
> mir da einer helfen? Mein Komilitonen meinen das wir das
> noch garnicht hatten und wir müssen die Aufgabe schon
> diese Woche abgeben.

Nun, wenn ihr das nicht hattet, ist das natürlich etwas fies.

Es ist aber nicht so schwer, als dass man es aus anderen Quellen als der VL nicht verstehen könnte.

Schaue etwa auf wikipedia

[]http://de.wikipedia.org/wiki/Gram-Schmidtsches_Orthogonalisierungsverfahren

Dort ist es ganz gut erklärt, ein Bsp. ist auch vorgerechnet.

Beachte aber, dass du nicht das Standardskalarprodukt, sondern dein oben definiertes SP hernehmen musst.

Es ist etwa [mm]==\int\limits_{-1}^1{t\cdot{}t^2} \ dt}=\left[\frac{1}{4}t^4\right]_{-1}^1=0[/mm]

>
> Bitte um Hilfe!

In dem Wikiartikel wird aus der gegebenen Basis (bzw. dem System) zunächst eine Orthogonalbasis (ein OG-System) gemacht.

Anschließend wird jeder Vektor normiert, um eine ONB (ein ON-System) zu erhalten.


Lies dir den Artikel mal in Ruhe durch, versuche nachzuvollziehen, was die da treiben und übertrage es dann auf deine Aufgabe!

>
> mfg

Viel Erfolg!


schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]