Scheitelpunktbest. von Funkt. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Geben Sie die Scheitelpunktsform und den Scheitelpunkt der folgenden Funktionen f an. Ist f nach
oben oder unten geöffnet? |
c) $f(x) = [mm] 3x^{2} [/mm] + ax + 3$
d) $f(x) = [mm] -2x^{2} [/mm] + 4x + 6b$
Habe schon mehrere Umformungen versucht und ich weiß auch, dass Aufgabe c) eine hyperb. Parabel ist.
Aufgabe d) stellt einen parab. Zylinder dar.
c) ist nach oben geöffnet, wobei d) nach unten geöffnet ist.
[ Bei Aufgabe c) habe ich einen Scheitelpunkt S(-3x;3) heraus.
(Denke aber nicht das es richtig ist) ]
Nun suche ich nach einer Scheitelpunktsform um den Scheitelpunkt
S=(Sx;Sy) anzugeben. Finde weder im Script (Professorin legt viel Wert auf eigenanteil. Arbeit), noch im Internet eine Vorgehensweise, wie ich eine Scheitelpunktform mit mehreren Variablen herstelle.
Bei einer Variablen x ist es noch ganz einfach, aber wenn plötzlich noch ein b oder ein a auftaucht ist bei mir Schicht im Schacht.
Haben in der Vorlesung auch nur Beispiele zu quadratischen Funktionen mit einer Veränderlichen 'x' behandelt.
Vielen Dank im Voraus.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hi,
das ist meine erste Antwort im Forum
> Geben Sie die Scheitelpunktsform und den Scheitelpunkt der
> folgenden Funktionen f an. Ist f nach
> oben oder unten geöffnet?
>
> c) [mm]f(x) = 3x^{2} + ax + 3[/mm]
> d) [mm]f(x) = -2x^{2} + 4x + 6b[/mm]
>
Ich kann dir die c) vormachen:
[mm]x^2+ax+3=3(x^2+\frac{a}{3}x)+3=3\left [(x^2+\frac{a}{3}x+(\frac{a}{3*2})^2-(\frac{a}{3*2})^2)\right ]+3=3(x+\frac{a}{6})^2-\frac{3a^2}{36}+3[/mm]
Bei Wikipedia gibt es einen tollen Artikel dazu:
http://de.wikipedia.org/wiki/Quadratische_Erg%C3%A4nzung
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:06 So 02.01.2011 | Autor: | derfrederic |
Soweit ich das verstanden habe, klammerst du erst den Leitkoeffizienten '3' aus. Danach gehst du hin und ergänzt quadratisch mit [mm] \bruch{1}{2}*\bruch{a*x}{3} [/mm] ???
Danach hast du den vorderen Teil
[mm] x^{2}+\bruch{ax}{3} [/mm] + [mm] (\bruch{a}{6})^{2} [/mm] als 1. binomische Formel umgeformt. Danach bleibt mir ja rechts nebenstehend [mm] (\bruch{a}{3*2})^2 [/mm] ...
Das gibt bei mir [mm] \bruch{a^{2}}{36} [/mm] und nicht wie du geschrieben hast [mm] \bruch{3a^{2}}{36}
[/mm]
Übersehe ich das was ???
Danke dir
|
|
|
|
|
Antwort überfällig ~ Habe übersehen, dass du die 3 wieder in die Klammer hineingezogen hast.
|
|
|
|
|
> Geben Sie die Scheitelpunktsform und den Scheitelpunkt der
> folgenden Funktionen f an. Ist f nach
> oben oder unten geöffnet?
Funktionen sind weder nach oben noch nach unten geöffnet
und haben keine Scheitelpunkte.
Diese Begriffe beziehen sich auf die Graphen (Schaubilder)
von (insbesondere quadratischen) Funktionen.
> c) [mm]f(x) = 3x^{2} + ax + 3[/mm]
> d) [mm]f(x) = -2x^{2} + 4x + 6b[/mm]
>
> Habe schon mehrere Umformungen versucht und ich weiß auch,
> dass Aufgabe c) eine hyperb. Parabel ist.
> Aufgabe d) stellt einen parab. Zylinder dar.
Was ist eine hyperbolische Parabel (hab ich noch nie gehört) ?
Unter einem parabolischen Zylinder (Zylinder mit einer Parabel
als Leitkurve) könnte ich mir zwar etwas vorstellen. Das hat
aber in der vorliegenden Aufgabe bestimmt nichts zu suchen.
LG Al-Chw.
|
|
|
|
|
Die Begriffe hyperb. paraboloid (hab ich mit parabel vertauscht) und parabo. zylinder habe ich aus mathematica 4.
Habe die Funktionen dort plotten lassen.
Womit du auf jeden Fall recht hast, sind die Eigenschaften nach unten/oben geöffnet. Verzeihung :)
Vielleicht steuers du ja noch etwas mehr Klarheit bei.
Besten Dank
|
|
|
|
|
> Die Begriffe hyperb. paraboloid (hab ich mit parabel
> vertauscht) und parabo. zylinder habe ich aus mathematica
> 4.
> Habe die Funktionen dort plotten lassen.
Dann bist du aber möglicherweise bei Mathematica in
einer falschen Abteilung (Darstellung von 3D-Flächen)
gelandet.
Für die vorliegenden Graphen brauchst du nur 2D-Grafik.
LG
Al-Chw.
|
|
|
|