www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Schätzer
Schätzer < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:34 Mo 06.02.2012
Autor: unibasel

Aufgabe
Sei [mm] X_{1},...,X_{n} [/mm] eine iid Folge aus [mm] U[0,\vartheta]. [/mm] Zeigen Sie, dass [mm] \bruch{n+1}{n} [/mm] max { [mm] X_{i}|1 \le [/mm] i [mm] \le [/mm] n } ein erwartungstreuer Schätzer für [mm] \vartheta [/mm] ist.

Nun meine Frage:
Wie kann man dies zeigen?

Ich weiss leider überhaupt nicht, wie man auf sowas kommt.
Herleiten war nie meine Stärke.

Danke für Ideen.
MFG

        
Bezug
Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mo 06.02.2012
Autor: blascowitz

Hallo,

berechne dir doch erstmal die Verteilungsfunktion von [mm] $\max \lbrace X_{1},X_{2},\hdots,X_{n}\rbrace [/mm] $.

Also $ P( [mm] \max \lbrace X_{1},X_{2},\hdots,X_{n}\rbrace\leq z)=P(X_{1}\leq [/mm] z, [mm] X_{2}\leq z,\hdots,X_{n}\leq [/mm] z )$

Was kann man über die letzte Wahrscheinlichkeit sagen(Stichwort unabhängigkeit)

Fang mal damit an
Viele Grüße
Blasco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]